Markov Chains and MCMC

CompSci 590.04
Instructor: AshwinMachanavajjhala
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Recap: Monte Carlo Method

If U is a universe of items, and G is a subset satisfying some
property, we want to estimate |G|

— Either intractable or inefficient to count exactly

Fori=1toN
* Choose u € U, uniformly at random

e (CheckwhetherueG?
 LetX =1ifuegG, X, =0 otherwise

A 2i X
Cc = |U|-
Return |U| N
u(l —p) G|
Variance: |U| ,where | = —
VN U
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Recap: Monte Carlo Method

When is this method an FPRAS?

|U| is known and easy to uniformly sample from U.

Easy to check whether sampleisin G

|U|/|G] is small ... (polynomial in the size of the input)

Theorem:

V0<e<150<8<1if N> —

then,P|(1 —&)|G| < C < (1 +¢)

Lecture 5 : 590.04 Fall 15

U
G

G

3 | 2
g2 5
|=1-56

Duke

UNIVYERSITY



Recap: Importance Sampling

In certain case |G| << |U|[, hence the number of samples is not
small.

Suppose q(x) is the density of interest, sample from a different
approximate density p(x)
q(x)

ff(x)q(x)dxz ff(x)( x ))p(x)dx
q(x)
p(x)

q(X;)
& p(X;)’

=0
where X; are sampled from p(x) D k
. UKC
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= Epx [f(x)

, N
Hence,ff(x)q(x)dx =~ N



Recap: Metropolis-Hastings Algorithm

Start with any initial value x,, such that p(x,) >0

Using current value x, , sample a new point according some
proposal distribution q(x, | x, ;)

p(x:) q(Xt—q |xt))

Compute a@(X¢|xi—q) = min(l,
Pu et P(Xe—1) q(X¢|xe—q)

With probability a accept the move to x,,
otherwise reject x,
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Recap: Why does Metropolis-Hastings
work?

Metropolis-Hastings describes a Markov chain with transition
probabilities:

P(x,y) = q(y|x) min (1

p(y) q(xly))
‘p(x) q(y|x)

Satisfied the detailed balance condition with p(x) as the
stationary distribution:

p(x)P(x,y) = p(y)P(y, x)

Duke

Lecture 5 : 590.04 Fall 15
UNIYVYERSITY



Today’s Class

 Variants on MCMC

* Burn-in and Convergence
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Metropolis Algorithm

* The proposal distribution is symmetric

q(xly) = q(ylx)

* Transition probability simplifies to:

p(y))

P(x,y) = q(xly) min (1,ﬁ
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Gibbs Sampling

* Suppose we want to sample a high dimensional point from a
probability distribution p(x1, x2, ..., xd)

Algorithm:
* I|nitialize starting value X° = x1, x2, ..., xd
* Pick some ordering of the variables (say 1..d)
e =1
* Do until convergence:
— Sample x from p(xi | x1, x2, .., xi-1, xi+1, .., xd)
— Set xi =x
— i=i+1modd
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Gibbs Sampling is a special case of MCMC

 Sampling from conditional is precisely the transition probability

* Accept move with probability 1

P((X, x—i)' (y' x—i))
= p(y |x_;) min (1

p(y |x_;)
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‘P, x_y) p(y |x_;)



Today’s Class

 Variants on MCMC

* Burn-in and Convergence
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Burn-in & Convergence

* MCMC eventually converges to the stationary distribution

* Period till it reaches converges is burn-in
— Those samples are discarded.

* Estimating convergence

— Run multiple chains in parallel and check whether their distributions are
similar.
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