Markov Chains and MCMC

CompSci 590.04 Instructor: AshwinMachanavajjhala

Lecture 5: 590.04 Fall 15

Recap: Monte Carlo Method

- If U is a universe of items, and G is a subset satisfying some property, we want to estimate |G|
 - Either intractable or inefficient to count exactly

For i = 1 to N

- Choose u ε U, uniformly at random
- Check whether u ε G?
- Let $X_i = 1$ if $u \in G$, $X_i = 0$ otherwise

Return
$$\hat{C} = |U| \cdot \frac{\sum_{i} X_{i}}{N}$$

Variance:
$$|U| \frac{\mu(1-\mu)}{\sqrt{N}}$$
, where $\mu = \frac{|G|}{|U|}$

Recap: Monte Carlo Method

When is this method an FPRAS?

- |U| is known and easy to uniformly sample from U.
- Easy to check whether sample is in G
- |U|/|G| is small ... (polynomial in the size of the input)

Theorem:

$$\forall \ 0 < \varepsilon < 1.5, 0 < \delta < 1, if \ N > \frac{|U|}{|G|} \cdot \frac{3}{\varepsilon^2} \cdot \ln \frac{2}{\delta}$$

then,
$$P[(1-\varepsilon)|G| \le \hat{C} \le (1+\varepsilon)|G|] \ge 1-\delta$$

Recap: Importance Sampling

- In certain case |G| << |U|, hence the number of samples is not small.
- Suppose q(x) is the density of interest, sample from a different approximate density p(x)

$$\int f(x)q(x)dx = \int f(x) \left(\frac{q(x)}{p(x)}\right) p(x)dx$$
$$= E_{p(x)} \left[f(x) \frac{q(x)}{p(x)} \right]$$

Hence,
$$\int f(x)q(x)dx \approx \frac{1}{N} \sum_{i=0}^{N} f(X_i) \frac{q(X_i)}{p(X_i)},$$

where X_i are sampled from p(x)

Duke

Recap: Metropolis-Hastings Algorithm

- Start with any initial value x_0 , such that $p(x_0) > 0$
- Using current value x_{t-1} , sample a new point according some **proposal distribution** $q(x_t \mid x_{t-1})$

• Compute
$$\alpha(x_t|x_{t-1}) = \min\left(1, \frac{p(x_t)}{p(x_{t-1})} \frac{q(x_{t-1}|x_t)}{q(x_t|x_{t-1})}\right)$$

• With probability α accept the move to x_t , otherwise reject x_t

Recap: Why does Metropolis-Hastings work?

Metropolis-Hastings describes a Markov chain with transition probabilities:

$$P(x,y) = q(y|x) \min\left(1, \frac{p(y)}{p(x)} \frac{q(x|y)}{q(y|x)}\right)$$

• Satisfied the detailed balance condition with p(x) as the stationary distribution:

$$p(x)P(x,y) = p(y)P(y,x)$$

Today's Class

Variants on MCMC

Burn-in and Convergence

Metropolis Algorithm

• The proposal distribution is symmetric

$$q(x|y) = q(y|x)$$

Transition probability simplifies to:

$$P(x,y) = q(x|y) \min\left(1, \frac{p(y)}{p(x)}\right)$$

Gibbs Sampling

 Suppose we want to sample a high dimensional point from a probability distribution p(x1, x2, ..., xd)

Algorithm:

- Initialize starting value X⁰ = x1, x2, ..., xd
- Pick some ordering of the variables (say 1..d)
- i = 1
- Do until convergence:
 - Sample x from p(xi | x1, x2, ..., xi-1, xi+1, ..., xd)
 - Set xi = x
 - $-i=i+1 \mod d$

Gibbs Sampling is a special case of MCMC

- Sampling from conditional is precisely the transition probability
- Accept move with probability 1

$$P((x, \mathbf{x}_{-i}), (y, \mathbf{x}_{-i}))$$
= $p(y | \mathbf{x}_{-i}) min \left(1, \frac{p(y, \mathbf{x}_{-i})}{p(x, \mathbf{x}_{-i})} \frac{p(x | \mathbf{x}_{-i})}{p(y | \mathbf{x}_{-i})} \right)$
= $p(y | \mathbf{x}_{-i})$

Today's Class

Variants on MCMC

Burn-in and Convergence

Burn-in & Convergence

- MCMC eventually converges to the stationary distribution
- Period till it reaches converges is burn-in
 - Those samples are discarded.
- Estimating convergence
 - Run multiple chains in parallel and check whether their distributions are similar.

