Streaming Algorithm: Filtering & Counting Distinct Elements

CompSci 590.04
Instructor: Ashwin Machanavajjhala
Can’t hope to process a query on the entire data, but only on a small working set.

Continuous/Standing Queries: Every time a new data item enters the system, (conceptually) re-evaluate the answer to the query.
Examples of Streaming Data

• Internet & Web traffic
 – Search/browsing history of users: Want to predict which ads/content to show the user based on their history. Can’t look at the entire history at runtime

• Continuous Monitoring
 – 6 million surveillance cameras in London
 – Video feeds from these cameras must be processed in real time

• Health monitoring on smart phones
• ...
Processing Streams

• Summarization
 – Maintain a small size sketch (or summary) of the stream
 – Answering queries using the sketch
 – E.g., random sample
 – later in the course – AMS, count min sketch, etc
 – Types of queries: # distinct elements, most frequent elements in the stream, aggregates like sum, min, max, etc.

• Window Queries
 – Queries over a recent k size window of the stream
 – Types of queries: alert if there is a burst of traffic in the last 1 minute, denial of service identification, alert if stock price > 100, etc.
Streaming Algorithms

• Sampling
 – We have already seen this.

• Filtering
 – “... does the incoming email address appear in a set of white listed addresses ...”

• Counting Distinct Elements
 – “... how many unique users visit cnn.com ...”

• Heavy Hitters
 – “... news articles contributing to >1% of all traffic ...”

• Online Aggregation
 – “... Based on seeing 50% of the data the answer is in [25,35] ...”
Streaming Algorithms

• Sampling
 – We have already seen this.

• Filtering
 – “… does the incoming email address appear in a set of white listed addresses … ”

• Counting Distinct Elements
 – “… how many unique users visit cnn.com … ”

• Heavy Hitters
 – “… news articles contributing to >1% of all traffic … ”

• Online Aggregation
 – “… Based on seeing 50% of the data the answer is in [25,35] … ”
Problem

• A set S containing m values
 – A database of a billion bit.ly tiny urls

• Memory with n bits.
 – Say 1 GB memory

• Goal: Construct a data structure that can efficient check whether a new element is in S
 – Returns TRUE with probability 1, when element is in S
 – Returns FALSE with high probability $(1-\varepsilon)$, when element is not in S
Applications

• The Google Chrome web browser used to use a Bloom filter to identify malicious URLs. Any URL is first checked against a local Bloom filter, and only if the Bloom filter returned a positive result was a full check of the URL performed (and the user warned, if that too returned a positive result)

 (source https://en.wikipedia.org/wiki/Bloom_filter)

• Facebook (and LinkedIn) uses a bloom filter of just 16 bits (!) for caching results about friends and friends of friends.

 (source Facebook Typeahead Tech Talk)
Bloom Filter

• Consider a set of hash functions \{h_1, h_2, ..., h_k\}, h_i: S \rightarrow [1, n]

Initialization:
• Set all \(n \) bits in the memory to 0.

Insert a new element ‘a’:
• Compute \(h_1(a), h_2(a), ..., h_k(a) \). Set the corresponding bits to 1.

Check whether an element ‘a’ is in S:
• Compute \(h_1(a), h_2(a), ..., h_k(a) \).
 If all the bits are 1, return TRUE.
 Else, return FALSE
Analysis

If a is in S:
• If \(h_1(a), h_2(a), \ldots, h_k(a) \) are all set to 1.
• Therefore, Bloom filter returns TRUE with probability 1.

If a not in S:
• Bloom filter returns TRUE if each \(h_i(a) \) is 1 due to some other element

\[
\Pr[\text{bit } j \text{ is 1 after } m \text{ insertions}] = 1 - \Pr[\text{bit } j \text{ is 0 after } m \text{ insertions}]
\]
\[
= 1 - \Pr[\text{bit } j \text{ was not set by } k \times m \text{ hash functions}]
\]
\[
= 1 - (1 - 1/n)^{km}
\]

\[
\Pr[\text{Bloom filter returns TRUE}] = \{1 - (1 - 1/n)^{km}\}^k \approx (1 - e^{-km/n})^k
\]
Example

• Suppose there are \(m = 10^9 \) tiny urls in bit.ly’s database.
• Suppose memory size of 1 GB (8 x 10^9 bits)

\(k = 1 \)

- \(\Pr[\text{Bloom filter returns TRUE | a not in S}] = 1 - e^{-m/n} \)
 \[= 1 - e^{-1/8} = 0.1175 \]

\(k = 2 \)

- \(\Pr[\text{Bloom filter returns TRUE | a not in S}] = (1 - e^{-2m/n})^2 \)
 \[= (1 - e^{-1/4})^2 \approx 0.0493 \]
Example

• Suppose there are $m = 10^9$ emails in the white list.
• Suppose memory size of 1 GB (8×10^9 bits)

Exercise:
What is the optimal number of hash functions given $m=|S|$ and n.
Summary of Bloom Filters

• Given a large set of elements S, efficiently check whether a new element is in the set.

• Bloom filters use hash functions to check membership
 – If a is in S, return TRUE with probability 1
 – If a is not in S, return FALSE with high probability
 – False positive error depends on $|S|$, number of bits in the memory and number of hash functions
COUNTING DISTINCT ELEMENTS
Distinct Elements

INPUT:
• A stream S of elements from a domain D
 – A stream of logins to a website
 – A stream of URLs browsed by a user
• Memory with n bits

OUTPUT
• An estimate of the number of distinct elements in the stream
 – Number of distinct users logging in to the website
 – Number of distinct URLs browsed by the user
Consider a hash function $h: D \rightarrow \{0,1\}^L$ which uniformly hashes elements in the stream to L bit values.

IDEA: The more distinct elements in S, the more distinct hash values are observed.

Define: $\text{Tail}_0(h(x)) = \text{number of trailing consecutive 0’s}$
- $\text{Tail}_0(101001) = 0$
- $\text{Tail}_0(101010) = 1$
- $\text{Tail}_0(001100) = 2$
- $\text{Tail}_0(101000) = 3$
- $\text{Tail}_0(000000) = 6 \ (=L)$
Algorithm

- For all $x \in S$,
 - Compute $k(x) = \text{Tail}_0(h(x))$
- Let $K = \max_{x \in S} k(x)$
- Return $F' = 2^K$
Analysis

Lemma: \(\Pr[\text{Tail}_0(h(x)) \geq j] = 2^{-j} \)

Proof:

• \(\text{Tail}_0(h(x)) \geq j \) implies at least the last \(j \) bits are 0

• Since elements are hashed to \(L \)-bit string uniformly at random, the probability is \(\left(\frac{1}{2} \right)^j = 2^{-j} \)
Analysis

• Let F be the true count of distinct elements, and let $c > 2$ be some integer.

• Let k_1 be the largest k such that $2^k < cF$

• Let k_2 be the smallest k such that $2^k > F/c$

• If K (returned by FM-sketch) is between k_2 and k_1, then

$$F/c \leq F' \leq cF$$
Let $z_x(k) = 1$ if $\text{Tail}_0(h(x)) \geq k$
= 0 otherwise

$E[z_x(k)] = 2^{-k}$ $\text{Var}(z_x(k)) = 2^{-k}(1 - 2^{-k})$

Let $X(k) = \sum_{x \in S} z_x(k)$

We are done if we show with high probability that $X(k1) = 0$ and $X(k2) \neq 0$
Analysis

Lemma: \(\Pr[X(k_1) \geq 1] \leq 1/c \)

Proof: \(\Pr[X(k_1) \geq 1] \leq E(X(k_1)) \) \(\text{Markov Inequality} \)
\[= F \cdot 2^{-k_1} \leq 1/c \]

Lemma: \(\Pr[X(k_2) = 0] \leq 1/c \)

Proof: \(\Pr[X(k_2) = 0] = \Pr[E(X(k_2)) - X(k_2) = E(X(k_2))] \)
\[\leq \Pr[|X(k_2) - E(X(k_2))| \geq E(X(k_2))] \]
\[\leq \frac{\text{Var}(X(k_2))}{E(X(k_2))^2} \text{ Chebyshev Ineq.} \]
\[\leq \frac{2^{k_2}}{F} \leq 1/c \]

Theorem: If FM-sketch returns \(F' \), then for all \(c > 2 \),
\(F/c \leq F' \leq cF \) with probability \(1 - 2/c \)
Boosting the success probability

• Construct s independent FM-sketches (F'_1, F'_2, ..., F'_s)
• Return the median F'_med

Q: For any δ, what is the value of s s.t. $P[F/c \leq F'_\text{med} \leq cF] > 1 - \delta$?
• Let $c > 4$, and $x_i = 0$ if $F/c \leq F'_i \leq cF$, and 1 otherwise

• $\rho = E[x_i]$

 \[= 1 - \Pr[F/c \leq F'_i \leq cF] \leq 2/c < \frac{1}{2} \]

• Let $X = \sum_i x_i$ \hspace{1cm} $E(X) = sp$

Lemma: If $X < s/2$, then $F/c \leq F'_{\text{med}} \leq cF$ \hspace{1cm} (Exercise)

We are done if we show that $\Pr[X \geq s/2]$ is small.
Analysis

\[
\Pr[X \geq s/2] = \Pr[X - E(X) = s/2 - E(X)] \\
\leq \Pr[|X - E(X)| \geq s/2 - sp] \\
= \Pr[|X - E(X)| \geq (1/2\rho - 1) sp] \\
\leq 2\exp(- (1/2\rho - 1)^2 sp/3) \quad \text{Chernoff bounds}
\]

Thus, to bound this probability by \(\delta \), we need \(s \) to be:

\[
s \geq \frac{3\rho}{\left(\frac{1}{2} - \rho\right)^2} \ln\left(\frac{2}{\delta}\right)
\]
Boosting the success probability

In practice,

- Construct $s \times k$ independent FM sketches
- Divide the sketches into s groups of k each
- Compute the mean estimate in each group
- Return the median of the means.

HyperLogLog: State of the art

- Similar algorithm: estimate multiple sketches
- Uses *stochastic averaging* using *harmonic means* to merge the sketches.
Summary

• Counting the number of distinct elements exactly takes $O(N)$ space and $\Omega(N)$ time, where N is the number of distinct elements.

• FM-sketch estimates the number of distinct elements in $O(\log N)$ space and $\Theta(N)$ time.

• FM-sketch: maximum number of trailing 0s in any hash value.

• Can get good estimates with high probability by computing the median of many independent FM-sketches.