Streaming Algorithm: Filtering & Counting Distinct Elements

CompSci 590.04 Instructor: AshwinMachanavajjhala

Duke

Lecture 6 : 590.04 Fall 15

Streaming Databa

Continuous/Standing Queries:
Every time a new data item
enters the system,
(conceptually) re-evaluate

Lecture 6: 590.04 Fall 15

Examples of Streaming Data

- Internet & Web traffic
 - Search/browsing history of users: Want to predict which ads/content to show the user based on their history.

Can't look at the entire history at runtime

- Continuous Monitoring
 - 6 million surveillance cameras in London
 - Video feeds from these cameras must be processed in real time
- Health monitoring on smart phones
- ...

Processing Streams

Summarization

- Maintain a small size sketch (or summary) of the stream
- Answering queries using the sketch
- E.g., random sample
- later in the course AMS, count min sketch, etc
- Types of queries: # distinct elements, most frequent elements in the stream, aggregates like sum, min, max, etc.

Window Queries

- Queries over a recent k size window of the stream
- Types of queries: alert if there is a burst of traffic in the last 1 minute,
 denial of service identification, alert if stock price > 100, etc.

Streaming Algorithms

- Sampling
 - We have already seen this.
- Filtering
 - "... does the incoming email address appear in a set of white listed addresses ... "
- Counting Distinct Elements
 - "... how many unique users visit cnn.com ..."
- Heavy Hitters
 - "... news articles contributing to >1% of all traffic ..."
- Online Aggregation
 - "... Based on seeing 50% of the data the answer is in [25,35] ..."

Streaming Algorithms

- Sampling
 - We have already seen this.
- Filtering
 - "... does the incoming email address appear in a set of white listed addresses ... "
- Counting Distinct Elements
 - "... how many unique users visit cnn.com ..."
- Heavy Hitters
 - "... news articles contributing to >1% of all traffic ..."
- Online Aggregation
 - "... Based on seeing 50% of the data the answer is in [25,35] ..."

This Class

FILTERING

Problem

- A set S containing m values
 - A database of a billion bit.ly tiny urls
- Memory with n bits.
 - Say 1 GB memory
- Goal: Construct a data structure that can efficient check whether a new element is in S
 - Returns TRUE with probability 1, when element is in S
 - Returns FALSE with high probability (1- ϵ), when element is not in S

Applications

 The Google Chrome web browser used to use a Bloom filter to identify malicious URLs. Any URL is first checked against a local Bloom filter, and only if the Bloom filter returned a positive result was a full check of the URL performed (and the user warned, if that too returned a positive result)

(source https://en.wikipedia.org/wiki/Bloom_filter)

 Facebook (and LinkedIn) uses a bloom filter of just 16 bits (!) for caching results about friends and friends of friends.

(source Facebook Typeahead Tech Talk)

Bloom Filter

Consider a set of hash functions {h₁, h₂, .., hk}, hi: S → [1, n]

Initialization:

Set all n bits in the memory to 0.

Insert a new element 'a':

Compute h₁(a), h₂(a), ..., h_k(a). Set the corresponding bits to 1.

Check whether an element 'a' is in S:

• Compute $h_1(a)$, $h_2(a)$, ..., $h_k(a)$. If all the bits are 1, return TRUE. Else, return FALSE

If a is in S:

- If $h_1(a)$, $h_2(a)$, ..., $h_k(a)$ are all set to 1.
- Therefore, Bloom filter returns TRUE with probability 1.

If a not in S:

 Bloom filter returns TRUE if each hi(a) is 1 due to some other element

Pr[bit j is 1 after m insertions] = 1 - Pr[bit j is 0 after m insertions]= 1 - Pr[bit j was not set by k x m hash functions]= $1 - (1 - 1/n)^{km}$

Pr[Bloom filter returns TRUE] = $\{1 - (1 - 1/n)^{km}\}^k\} \approx (1 - e^{-km/n})^k$

Example

- Suppose there are $m = 10^9$ tiny urls in bit.ly's database.
- Suppose memory size of 1 GB (8 x 10⁹ bits)

$$k = 1$$

Pr[Bloom filter returns TRUE | a not in S] = 1 - e^{-m/n}

$$= 1 - e^{-1/8} = 0.1175$$

$$k = 2$$

• Pr[Bloom filter returns TRUE | a not in S] = $(1 - e^{-2m/n})^2$ = $(1 - e^{-1/4})^2 \approx 0.0493$

Example

- Suppose there are $m = 10^9$ emails in the white list.
- Suppose memory size of 1 GB (8 x 10⁹ bits)

Summary of Bloom Filters

- Given a large set of elements S, efficiently check whether a new element is in the set.
- Bloom filters use hash functions to check membership
 - If a is in S, return TRUE with probability 1
 - If a is not in S, return FALSE with high probability
 - False positive error depends on |S|, number of bits in the memory and number of hash functions

COUNTING DISTINCT ELEMENTS

Distinct Elements

INPUT:

- A stream S of elements from a domain D
 - A stream of logins to a website
 - A stream of URLs browsed by a user
- Memory with n bits

OUTPUT

- An estimate of the number of distinct elements in the stream
 - Number of distinct users logging in to the website
 - Number of distinct URLs browsed by the user

FM-sketch

- Consider a hash function h:D \rightarrow {0,1}^L which uniformly hashes elements in the stream to L bit values
- IDEA: The more distinct elements in S, the more distinct hash values are observed.
- Define: Tail₀(h(x)) = number of trailing consecutive 0's
 - $Tail_0(101001) = 0$
 - $Tail_0(101010) = 1$
 - $Tail_0(001100) = 2$
 - $Tail_0(101000) = 3$
 - Tail₀(000000) = 6 (=L)

FM-sketch

Algorithm

- For all x ε S,
 - Compute $k(x) = Tail_0(h(x))$
- Let $K = \max_{x \in S} k(x)$
- Return $F' = 2^K$

Lemma: $Pr[Tail_0(h(x)) \ge j] = 2^{-j}$

Proof:

- Tail₀(h(x)) ≥ j implies at least the last j bits are 0
- Since elements are hashed to L-bit string uniformly at random, the probability is $(\frac{1}{2})^j = 2^{-j}$

- Let F be the true count of distinct elements, and let c>2 be some integer.
- Let k₁ be the largest k such that 2^k < cF
- Let k₂ be the smallest k such that 2^k > F/c
- If K (returned by FM-sketch) is between k₂ and k₁, then

$$F/c \le F' \le cF$$

- Let z_x(k) = 1 if Tail₀(h(x)) ≥ k
 = 0 otherwise
- $E[z_x(k)] = 2^{-k}$ $Var(z_x(k)) = 2^{-k}(1-2^{-k})$
- Let $X(k) = \sum_{x \in S} z_x(k)$
- We are done if we show with high probability that X(k1) = 0 and $X(k2) \neq 0$

Lemma: $Pr[X(k_1) \ge 1] \le 1/c$

Proof: $Pr[X(k_1) \ge 1] \le E(X(k_1))$ *Markov Inequality*

 $= F 2^{-k1} \le 1/c$

Lemma: $Pr[X(k2) = 0] \le 1/c$

Proof: Pr[X(k2) = 0] = Pr[E(X(k2)) - X(k2) = E(X(k2))]

 $\leq \Pr[|X(k2) - E(X(k2))| \geq E(X(k2))]$

 $\leq Var(X(k2)) / E(X(k2))^2$ Chebyshev Ineq.

 $\leq 2^{k2}/F \leq 1/c$

Theorem: If FM-sketch returns F', then for all c > 2, $F/c \le F' \le cF$ with probability 1-2/c

Boosting the success probability

- Construct s independent FM-sketches (F'₁, F'₂, ..., F'_s)
- Return the median F'_{med}

Q: For any δ , what is the value of s s.t. $P[F/c \le F'_{med} \le cF] > 1 - \delta$?

- Let c > 4, and $x_i = 0$ if $F/c \le F'_i \le cF$, and 1 otherwise
- $\rho = E[x_i]$ = 1 - Pr[F/c \le F'_i \le cF] \le 2/c < \%
- Let $X = \Sigma_i x_i$ $E(X) = s\rho$

Lemma: If X < s/2, then $F/c \le F'_{med} \le cF$ (Exercise)

We are done if we show that $Pr[X \ge s/2]$ is small.

Pr[X ≥ s/2] = Pr[X − E(X) = s/2 − E(X)]
≤ Pr[|X − E(X)| ≥ s/2 − sρ]
= Pr[|X − E(X)| ≥ (1/2ρ − 1) sρ]
≤
$$2\exp(-(1/2ρ - 1)^2 sρ/3$$
) Chernoff bounds

Thus, to bound this probability by δ , we need s to be:

$$s \ge \frac{3\rho}{\left(1/2 - \rho\right)^2} \ln\left(\frac{2}{\delta}\right)$$

Boosting the success probability

In practice,

- Construct s x k independent FM sketches
- Divide the sketches into s groups of k each
- Compute the mean estimate in each group
- Return the median of the means.

HyperLogLog: State of the art

- Similar algorithm: estimate multiple sketches
- Uses stochastic averaging using harmonic means to merge the sketches.

Summary

- Counting the number of distinct elements exactly takes O(N) space and $\Omega(N)$ time, where N is the number of distinct elements
- FM-sketch estimates the number of distinct elements in O(log N) space and Θ(N) time
- FM-sketch: maximum number of trailing 0s in any hash value
- Can get good estimates with high probability by computing the median of many independent FM-sketches.

