
Estimating Frequency Moments of Streams
In this class we will look at the two simple sketches for estimating the frequency moments of

a stream. The analysis will introduce two important tricks in probability – boosting the accuracy
of a random variable by consideer the “median of means” of multiple independent copies of the
random variable, and using k-wise independent sets of random variable.

1 Frequency Moments

Consider a stream S = {a1, a2, ..., am} with elements from a domain D = {v1, v2, ..., vn}. Let mi

denote the frequency (also sometimes called multiplicity) of value vi ∈ D; i.e., the number of times
vi appears in S. The kth frequency moment of the stream is defined as:

Fk =

n∑
i=1

mk
i (1)

We will develop algorithms that can approximate Fk by making one pass of the stream and using
a small amount of memory o(n+m).

Frequency moments have a number of applications. F0 represents the number of distinct ele-
ments in the streams (which the FM-sketch from last class estimates using O(log n) space. F1 is
the number of elements in the stream m.

F2 is used in database optimization engines to estimate self join size. Consider the query,
“return all pairs of individuals that are in the same location”. Such a query has cardinality equal
to
∑

im
2
i /2, where mi is the number of individuals at a location. Depending on the estimated

size of the query, the database can decide (without actually evaluating the answer) which query
answering strategy is best suited. F2 is also used to measure the information in a stream.

In general, Fk represents the degree of skew in the data. If Fk/F0 is large, then there are some
values in the domain that repeat more frequently than the rest. Estimating the skew in the data
also helps when deciding how to partition data in a distributed system.

2 AMS Sketch

Lets first assume that we know m. Construct a random variable X as follows:

• Choose a random element from the stream x = ai.

• Let r = |{aj |j ≥ i, aj = ai}|, or the number of times the value x appears in the rest of the
stream (inclusive of ai).

• X = m(rk − (r − 1)k)

X can be constructing using O(log n+ logm) space – log n bits to store the value x, and logm
bits to maintain r.

Exercise: We assumed that we know the number of elements in the stream. However the above
can be modified to work even when m is unknown. (Hint: reservoir sampling).

It is easy to see that X is an unbiased estimator of Fk.
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E(X) =
m∑
i=1

1

m
E(X|ith element in the stream was picked)

=
1

m

n∑
j=1

mi∑
k=1

E(X|ai is the kth repetition of vj )

=
m

m

n∑
j=1

[
1k + (2k − 1k) + . . .+ (mk

j − (mj − 1)k)
]

=
n∑
j=1

mk
j = Fk

We now show how to use multiple such random variables X to estimate Fk within ε relative error
with high probability (1− δ).

2.1 Median of Means

Suppose X is a random variable such that E(X) = µ and V ar(X) < cµ2, for some c > 0. Then,
we can construct an estimator Z such that for all ε > 0 and δ > 0,

P (|Z − µ| > εµ) < δ (2)

by averaging s1 = Θ(c/ε2) independent copies of X, and then taking the median of s2 = Θ(log(1/δ))
such averages.

Means: Let X1, . . . , Xs1 be s1 copies of X. Let Y = 1
s1

∑
iXi. Clearly, E(Y ) = E(X) = µ.

V ar(Y ) =
1

s1
V ar(X) <

cµ2

s1

P (|Y − µ| > εµ) <
V ar(Y )

ε2µ2
by Chebyshev

Therefore, if s1 = 8c
ε2

, then P (|Y − µ| > εµ) < 1
8 .

Median of means: Now let Z be the median of s2 copies of Y . Let Wi be defined as follows:

Wi =

{
1 if |Y − µ| > εµ
0 else

From the previous result about Y , E(Wi) = ρ < 1
8 . Therefore, E(

∑
iWi) < s2/8. Moreover,
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whenever the median Z is outside the interval µ± ε,
∑

iWi > s2/2. Therefore,

P (|Z − µ| > εµ) < P (
∑
i

Wi > s2/2)

≤ P (|
∑
i

Wi − E(
∑
i

Wi)| > s2/2− s2ρ)

= P (|
∑
i

Wi − E(
∑
i

Wi)| > (
1

2ρ
− 1)s2ρ)

≤ 2e
− 1

3
·
(

1
2ρ
−1

)2
·s2ρ by Chernoff bounds

< 2e−
s2
3 when ρ < 1

8 , ρ
(

1
2ρ − 1

)2
> 1

Therefore, taking the median of s2 = 3 log
(
2
δ

)
ensures that P (|Z − µ| > εµ) < δ.

2.2 Back to AMS

We use the medians of means approach to boost the accuracy of the AMS random variable X. For
that, we need to bound the variance of X by c · F 2

k .

V ar(X) = E(X2)− E(X)2

E(X2) =
m2

m

n∑
i=1

[
12k + (22k − 12k) + . . .+ (m2k

i − (mi − 1)2k
]

When a > b > 0, we have

ak − bk = (a− b)(
k−1∑
j=0

ajbk−1−j) ≤ (a− b)(kak−1)

Therefore,

E(X2) ≤ m
[
k12k−1 + (k2k−1)(2k − 1k) + . . .+ kmk−1(mk

i − (mi − 1)k)
]

≤ m
[
km2k−1

1 + km2k−1
2 + . . .+ km2k−1

n

]
= kF1F2k−1

Exercise: We can show that for all positive integers m1,m2, . . . ,mn,(∑
i

mi

)(∑
i

m2k−1
i

)
≤ n1−

1
k

(∑
i

mk
i

)2

Therefore, we get that V ar(X) ≤ kn1−
1
kF 2

k . Hence, by using the median of means aggregation
technique, we can estimate Fk within a relative error of ε with probability at least (1 − δ) using

O(kn1−
1
k

1
ε2

log
(
1
δ

)
) independent estimators (each of which take O(log n+ logm) space.
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3 A simpler sketch for F2

Using the above analysis we can estimate F2 using O(
√
n
ε2

(log n+ logm) log
(
1
δ

)
) bits. However, we

can estimate F2 using much smaller number of bits as follows.
Suppose we have n independent uniform random variables x1, x2, . . . , xn each taking values in

{−1, 1}. (This requires n bits of memory, but we will show how to do this in O(log n) bits in the
next section). We compute a sketch as follows:

• Compute r =
∑n

i=1 xi ·mi

• Return r2 as an estimate for F2.

Note that r can be maintained as the new elements are seen in the stream by increasing/decreasing
r by 1 depending on the sign of xi. Why does this work?

E(r2) = E[(
∑
i

ximi)
2] =

∑
i

m2
iE[x2i ] + 2

∑
i<j

E[xixjmimj ]

=
∑
i

m2
i = F2 since xi, xj are independent, E(xixj) is 0

V ar(r2) = E(r4)− F 2
2

E(r4) = E

[
(
∑
i

ximi)
2(
∑
i

ximi)
2

]
= E[((

∑
i

x2im
2
i ) + (2

∑
i<j

xixjmimj))
2]

= E[(
∑
i

x2im
2
i )

2] + 4E[(
∑
i<j

xixjmimj)
2] + 4E[(

∑
i

x2im
2
i )(
∑
i<j

xixjmimj)]

The last term is 0 since every pair of variables xi and xj are independent. Since x2i = 1, the first
term is F 2

2 .

V ar(r2) = E(r4)− F 2
2 = 4E[(

∑
i<j

xixjmimj)
2]

= 4E[
∑
i<j

x2ix
2
jm

2
im

2
j ] + 4E[

∑
i<j<k<l

xixjxkxlmimjmkml]

Again, the last term is 0 since every set of 4 random variables is independent of each other.
Therefore,

V ar(r2) = 4
∑
i<j

m2
im

2
j ≤ 2F 2

2

Therefore, by using the median of means method, we can estimate F2 using Θ( 1
ε2

log
(
1
δ

)
) indepen-

dent estimates. However, the technique we presented needs O(n) random bits. We will reduce this
to O(log n) bits in the next section by using 4-wise independent random variables rather than fully
independent random variables.
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3.1 k-wise Independent Random Variables

In the previous analysis, note that we only needed to use the fact that eveyr set of 4 distinct random
variables xi, xj , xk, xl are independent of each. We call a set of random variables X = {x1, . . . , xn}
to be k-wise independent random variables if every subset of k random variables are independent.
That is:

∀1 ≤ i1 < i2 < . . . < ik ≤ n, P (∧kj=1xij = aj) =

k∏
j=1

P (xij = aj)

Example: Consider two fair coins x and y. Let z be a random variable that returns “heads” if x
and y both lands heads or both land tails (think XOR), and “tails” otherwise. We can easily check
that any pair of x, y and z are independent, but all x, y and z are not independent.

In the above F2 sketch, we only need the set of random variables X to be 4-wise independent.
We can generate 2n k-wise independent variables using O(n) bits using the random polynomial
construction (and thus generate each F2 estimate using O(log n) bits). The construction of 2-wise
(or pairwise) independent random variables is shown below.

Consider a family of hash functionsH = {ha,b|a, b ∈ {0, 1}n}, where each ha,b : {0, 1}n → {0, 1}n
is defined as follows:

ha,b(x) = ax+ b

That is a hash function is constructed by choosing a and b uniformly at random from {0, 1}n. All
elements are hashed using ha,b. The values resulting from applying H to values in {0, 1}n are 2n

pairwise independent random variables.

Lemma 1.
∀x, y, P (H(x) = y) = 2−n

Proof: Exercise

Lemma 2.
∀x, y, z, w P (H(x) = y ∧H(z) = w) = 2−2n

Proof sketch: Consider any hash function ha,b. Given hash values y, w for x, z respectively, we
can find a unique solution for the linear system of equations involving a, b. Therefore, only one pair
out of the 2−2n pairs will result in x, z hashing to y, w respectively. Therefore, the probability is
2−2n.

We can also easily see that the resulting variablesH(x) are not 3-wise independent. For instance,

P (H(1) = 2 ∧H(2) = 3 ∧H(3) = 100) = 0

This is because the first two has h value force a = 1, b = 1, and the third hash value is not possible
using h1,1.

The above construction can be extended to generate k-wise independent random variables by using
random polynomials of the form

∑k−1
i=0 aix

i.
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