Estimating Frequency Moments of Streams

In this class we will look at the two simple sketches for estimating the frequency moments of a stream. The analysis will introduce two important tricks in probability – boosting the accuracy of a random variable by consider the “median of means” of multiple independent copies of the random variable, and using k-wise independent sets of random variable.

1 Frequency Moments

Consider a stream $S = \{a_1, a_2, ..., a_m\}$ with elements from a domain $D = \{v_1, v_2, ..., v_n\}$. Let m_i denote the frequency (also sometimes called multiplicity) of value $v_i \in D$; i.e., the number of times v_i appears in S. The k^{th} frequency moment of the stream is defined as:

$$F_k = \sum_{i=1}^{n} m_i^k$$

We will develop algorithms that can approximate F_k by making one pass of the stream and using a small amount of memory $o(n + m)$.

Frequency moments have a number of applications. F_0 represents the number of distinct elements in the streams (which the FM-sketch from last class estimates using $O(\log n)$ space. F_1 is the number of elements in the stream m.

F_2 is used in database optimization engines to estimate self join size. Consider the query, “return all pairs of individuals that are in the same location”. Such a query has cardinality equal to $\sum_i m_i^2 / 2$, where m_i is the number of individuals at a location. Depending on the estimated size of the query, the database can decide (without actually evaluating the answer) which query answering strategy is best suited. F_2 is also used to measure the information in a stream.

In general, F_k represents the degree of skew in the data. If F_k / F_0 is large, then there are some values in the domain that repeat more frequently than the rest. Estimating the skew in the data also helps when deciding how to partition data in a distributed system.

2 AMS Sketch

Let’s first assume that we know m. Construct a random variable X as follows:

- Choose a random element from the stream $x = a_i$.
- Let $r = |\{a_j | j \geq i, a_j = a_i\}|$, or the number of times the value x appears in the rest of the stream (inclusive of a_i).
- $X = m(r^k - (r - 1)^k)$

X can be constructing using $O(\log n + \log m)$ space – $\log n$ bits to store the value x, and $\log m$ bits to maintain r.

Exercise: We assumed that we know the number of elements in the stream. However the above can be modified to work even when m is unknown. (Hint: reservoir sampling).

It is easy to see that X is an unbiased estimator of F_k.

1
\[
E(X) = \sum_{i=1}^{m} \frac{1}{m} E(X| {i}^{th} \text{ element in the stream was picked}) \\
= \frac{1}{m} \sum_{j=1}^{n} \sum_{k=1}^{m_i} E(X| a_i \text{ is the } k^{th} \text{ repetition of } v_j) \\
= \frac{m}{m} \sum_{j=1}^{n} \left[1^k + (2^k - 1^k) + \ldots + (m_j^k - (m_j - 1)^k) \right] \\
= \sum_{j=1}^{n} m_j^k = F_k
\]

We now show how to use multiple such random variables \(X\) to estimate \(F_k\) within \(\epsilon\) relative error with high probability \((1 - \delta)\).

2.1 Median of Means

Suppose \(X\) is a random variable such that \(E(X) = \mu\) and \(\text{Var}(X) < c\mu^2\), for some \(c > 0\). Then, we can construct an estimator \(Z\) such that for all \(\epsilon > 0\) and \(\delta > 0\),

\[
P(\left| Z - \mu \right| > \epsilon \mu) < \delta
\]

by averaging \(s_1 = \Theta(\frac{c}{\epsilon^2})\) independent copies of \(X\), and then taking the median of \(s_2 = \Theta(\log(1/\delta))\) such averages.

Means: Let \(X_1, \ldots, X_{s_1}\) be \(s_1\) copies of \(X\). Let \(Y = \frac{1}{s_1} \sum_i X_i\). Clearly, \(E(Y) = E(X) = \mu\).

\[
\text{Var}(Y) = \frac{1}{s_1} \text{Var}(X) < \frac{c\mu^2}{s_1}
\]

\[
P(\left| Y - \mu \right| > \epsilon \mu) < \frac{\text{Var}(Y)}{\epsilon^2 \mu^2} \text{ by Chebyshev}
\]

Therefore, if \(s_1 = \frac{8c}{\epsilon^2}\), then \(P(\left| Y - \mu \right| > \epsilon \mu) < \frac{1}{8}\).

Median of means: Now let \(Z\) be the median of \(s_2\) copies of \(Y\). Let \(W_i\) be defined as follows:

\[
W_i = \begin{cases}
1 & \text{if } |Y - \mu| > \epsilon \mu \\
0 & \text{else}
\end{cases}
\]

From the previous result about \(Y\), \(E(W_i) = \rho < \frac{1}{8}\). Therefore, \(E(\sum_i W_i) < s_2/8\). Moreover,
whenever the median \(Z \) is outside the interval \(\mu \pm \epsilon \), \(\sum_i W_i > s_2/2 \). Therefore,

\[
P(|Z - \mu| > \epsilon \mu) < P(\sum_i W_i > s_2/2)
\]

\[
\leq P(\left| \sum_i W_i - E(\sum_i W_i) \right| > s_2/2 - s_2\rho)
\]

\[
= P(\left| \sum_i W_i - E(\sum_i W_i) \right| > (\frac{1}{2\rho} - 1)s_2\rho)
\]

\[
\leq 2e^{-\frac{1}{4} \left(\frac{1}{2\rho} - 1 \right)^2 s_2\rho} \text{ by Chernoff bounds}
\]

\[
< 2e^{-\frac{\rho}{3}} \text{ when } \rho < \frac{1}{8}, \rho \left(\frac{1}{2\rho} - 1 \right)^2 > 1
\]

Therefore, taking the median of \(s_2 = 3 \log \left(\frac{3}{\delta} \right) \) ensures that \(P(|Z - \mu| > \epsilon \mu) < \delta \).

2.2 Back to AMS

We use the medians of means approach to boost the accuracy of the AMS random variable \(X \). For that, we need to bound the variance of \(X \) by \(c \cdot F_k^2 \).

\[
Var(X) = E(X^2) - E(X)^2
\]

\[
E(X^2) = \frac{m^2}{m} \sum_{i=1}^n \left[1^{2k} + (2^{2k} - 1^k) + \ldots + (m_i^{2k} - (m_i - 1)^{2k}) \right]
\]

When \(a > b > 0 \), we have

\[
a^k - b^k = (a - b)(\sum_{j=0}^{k-1} a^j b^{k-1-j}) \leq (a - b)(ka^{k-1})
\]

Therefore,

\[
E(X^2) \leq m \left[k1^{2k-1} + (k2^{k-1})(2^k - 1^k) + \ldots + km^{k-1}(m_i^{k} - (m_i - 1)^{k}) \right]
\]

\[
\leq m \left[km_1^{2k-1} + km_2^{2k-1} + \ldots + km_n^{2k-1} \right]
\]

\[
= kF_{1} F_{2k-1}
\]

Exercise: We can show that for all positive integers \(m_1, m_2, \ldots, m_n \),

\[
\left(\sum_i m_i \right) \left(\sum_i m_i^{2k-1} \right) \leq n^{1 - \frac{1}{k}} \left(\sum_i m_i^{k} \right)^2
\]

Therefore, we get that \(Var(X) \leq kn^{1 - \frac{1}{k}} F_k^2 \). Hence, by using the median of means aggregation technique, we can estimate \(F_k \) within a relative error of \(\epsilon \) with probability at least \((1 - \delta) \) using \(O(kn^{1 - \frac{1}{k}} \frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right)) \) independent estimators (each of which take \(O(\log n + \log m) \) space.

3
3 A simpler sketch for F_2

Using the above analysis we can estimate F_2 using $O(\sqrt{\pi}(\log n + \log m) \log (\frac{1}{\delta}))$ bits. However, we can estimate F_2 using much smaller number of bits as follows.

Suppose we have n independent uniform random variables x_1, x_2, \ldots, x_n each taking values in $\{-1, 1\}$. (This requires n bits of memory, but we will show how to do this in $O(\log n)$ bits in the next section). We compute a sketch as follows:

- Compute $r = \sum_{i=1}^{n} x_i \cdot m_i$
- Return r^2 as an estimate for F_2.

Note that r can be maintained as the new elements are seen in the stream by increasing/decreasing r by 1 depending on the sign of x_i. Why does this work?

\[
E(r^2) = E[(\sum_i x_i m_i)^2] = \sum_i m_i^2 E[x_i^2] + 2 \sum_{i<j} E[x_i x_j m_i m_j]
\]

\[
= \sum_i m_i^2 = F_2 \text{ since } x_i, x_j \text{ are independent, } E(x_i x_j) = 0
\]

\[
Var(r^2) = E(r^4) - F_2^2
\]

\[
E(r^4) = E\left[(\sum_i x_i m_i)^2 (\sum_i x_i m_i)^2 \right]
\]

\[
= E\left[(\sum_i x_i^2 m_i^2) + 2 \sum_{i<j} x_i x_j m_i m_j \right]^2
\]

\[
= E\left[(\sum_i x_i^2 m_i^2)^2 \right] + 4E\left[(\sum_i x_i x_j m_i m_j)^2 \right] + 4E\left[(\sum_i x_i^2 m_i^2) (\sum_{i<j} x_i x_j m_i m_j) \right]
\]

The last term is 0 since every pair of variables x_i and x_j are independent. Since $x_i^2 = 1$, the first term is F_2^2.

\[
Var(r^2) = E(r^4) - F_2^2 = 4E\left[(\sum_{i<j} x_i x_j m_i m_j)^2 \right]
\]

\[
= 4E\left[\sum_{i<j} x_i^2 x_j^2 m_i^2 m_j^2 \right] + 4E\left[\sum_{i<j<k<\ell} x_i x_j x_k x_l m_i m_j m_k m_l \right]
\]

Again, the last term is 0 since every set of 4 random variables is independent of each other. Therefore,

\[
Var(r^2) = 4 \sum_{i<j} m_i^2 m_j^2 \leq 2F_2^2
\]

Therefore, by using the median of means method, we can estimate F_2 using $\Theta(\frac{1}{\sqrt{\pi}} \log (\frac{1}{\delta}))$ independent estimates. However, the technique we presented needs $O(n)$ random bits. We will reduce this to $O(\log n)$ bits in the next section by using 4-wise independent random variables rather than fully independent random variables.
3.1 k-wise Independent Random Variables

In the previous analysis, note that we only needed to use the fact that every set of 4 distinct random variables x_i, x_j, x_k, x_l are independent of each. We call a set of random variables $X = \{x_1, \ldots, x_n\}$ to be k-wise independent random variables if every subset of k random variables are independent. That is:

\[\forall 1 \leq i_1 < i_2 < \ldots < i_k \leq n, P(\wedge_{j=1}^{k} x_{i_j} = a_j) = \prod_{j=1}^{k} P(x_{i_j} = a_j) \]

Example: Consider two fair coins x and y. Let z be a random variable that returns “heads” if x and y both land heads or both land tails (think XOR), and “tails” otherwise. We can easily check that any pair of x, y and z are independent, but all x, y and z are not independent.

In the above F_2 sketch, we only need the set of random variables X to be 4-wise independent. We can generate 2^n k-wise independent variables using $O(n)$ bits using the random polynomial construction (and thus generate each F_2 estimate using $O(\log n)$ bits). The construction of 2-wise (or pairwise) independent random variables is shown below.

Consider a family of hash functions $\mathcal{H} = \{h_{a,b}|a, b \in \{0, 1\}^n\}$, where each $h_{a,b} : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is defined as follows:

\[h_{a,b}(x) = ax + b \]

That is a hash function is constructed by choosing a and b uniformly at random from $\{0, 1\}^n$. All elements are hashed using $h_{a,b}$. The values resulting from applying \mathcal{H} to values in $\{0, 1\}^n$ are 2^n pairwise independent random variables.

Lemma 1.

\[\forall x, y, P(\mathcal{H}(x) = y) = 2^{-n} \]

Proof: Exercise

Lemma 2.

\[\forall x, y, z, w P(\mathcal{H}(x) = y \land \mathcal{H}(z) = w) = 2^{-2n} \]

Proof sketch: Consider any hash function $h_{a,b}$. Given hash values y, w for x, z respectively, we can find a unique solution for the linear system of equations involving a, b. Therefore, only one pair out of the 2^{-2n} pairs will result in x, z hashing to y, w respectively. Therefore, the probability is 2^{-2n}.

We can also easily see that the resulting variables $\mathcal{H}(x)$ are not 3-wise independent. For instance,

\[P(\mathcal{H}(1) = 2 \land \mathcal{H}(2) = 3 \land \mathcal{H}(3) = 100) = 0 \]

This is because the first two has h value force $a = 1, b = 1$, and the third hash value is not possible using $h_{1,1}$.

The above construction can be extended to generate k-wise independent random variables by using random polynomials of the form $\sum_{i=0}^{k-1} a_i x^i$.