Estimating Frequency Moments of Streams

In this class we will look at the two simple sketches for estimating the frequency moments of a stream. The analysis will introduce two important tricks in probability - boosting the accuracy of a random variable by consideer the "median of means" of multiple independent copies of the random variable, and using k -wise independent sets of random variable.

1 Frequency Moments

Consider a stream $S=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ with elements from a domain $D=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let m_{i} denote the frequency (also sometimes called multiplicity) of value $v_{i} \in D$; i.e., the number of times v_{i} appears in S. The $k^{t h}$ frequency moment of the stream is defined as:

$$
\begin{equation*}
F_{k}=\sum_{i=1}^{n} m_{i}^{k} \tag{1}
\end{equation*}
$$

We will develop algorithms that can approximate F_{k} by making one pass of the stream and using a small amount of memory $o(n+m)$.

Frequency moments have a number of applications. F_{0} represents the number of distinct elements in the streams (which the FM-sketch from last class estimates using $O(\log n)$ space. F_{1} is the number of elements in the stream m.
F_{2} is used in database optimization engines to estimate self join size. Consider the query, "return all pairs of individuals that are in the same location". Such a query has cardinality equal to $\sum_{i} m_{i}^{2} / 2$, where m_{i} is the number of individuals at a location. Depending on the estimated size of the query, the database can decide (without actually evaluating the answer) which query answering strategy is best suited. F_{2} is also used to measure the information in a stream.

In general, F_{k} represents the degree of skew in the data. If F_{k} / F_{0} is large, then there are some values in the domain that repeat more frequently than the rest. Estimating the skew in the data also helps when deciding how to partition data in a distributed system.

2 AMS Sketch

Lets first assume that we know m. Construct a random variable X as follows:

- Choose a random element from the stream $x=a_{i}$.
- Let $r=\left|\left\{a_{j} \mid j \geq i, a_{j}=a_{i}\right\}\right|$, or the number of times the value x appears in the rest of the stream (inclusive of a_{i}).
- $X=m\left(r^{k}-(r-1)^{k}\right)$
X can be constructing using $O(\log n+\log m)$ space $-\log n$ bits to store the value x, and $\log m$ bits to maintain r.

Exercise: We assumed that we know the number of elements in the stream. However the above can be modified to work even when m is unknown. (Hint: reservoir sampling).

It is easy to see that X is an unbiased estimator of F_{k}.

$$
\begin{aligned}
E(X) & =\sum_{i=1}^{m} \frac{1}{m} E\left(X \mid i^{\text {th }} \text { element in the stream was picked }\right) \\
& =\frac{1}{m} \sum_{j=1}^{n} \sum_{k=1}^{m_{i}} E\left(X \mid a_{i} \text { is the } k^{t h} \text { repetition of } v_{j}\right) \\
& =\frac{m}{m} \sum_{j=1}^{n}\left[1^{k}+\left(2^{k}-1^{k}\right)+\ldots+\left(m_{j}^{k}-\left(m_{j}-1\right)^{k}\right)\right] \\
& =\sum_{j=1}^{n} m_{j}^{k}=F_{k}
\end{aligned}
$$

We now show how to use multiple such random variables X to estimate F_{k} within ϵ relative error with high probability $(1-\delta)$.

2.1 Median of Means

Suppose X is a random variable such that $E(X)=\mu$ and $\operatorname{Var}(X)<c \mu^{2}$, for some $c>0$. Then, we can construct an estimator Z such that for all $\epsilon>0$ and $\delta>0$,

$$
\begin{equation*}
P(|Z-\mu|>\epsilon \mu)<\delta \tag{2}
\end{equation*}
$$

by averaging $s_{1}=\Theta\left(c / \epsilon^{2}\right)$ independent copies of X, and then taking the median of $s_{2}=\Theta(\log (1 / \delta))$ such averages.

Means: Let $X_{1}, \ldots, X_{s_{1}}$ be s_{1} copies of X. Let $Y=\frac{1}{s_{1}} \sum_{i} X_{i}$. Clearly, $E(Y)=E(X)=\mu$.

$$
\begin{aligned}
\operatorname{Var}(Y) & =\frac{1}{s_{1}} \operatorname{Var}(X)<\frac{c \mu^{2}}{s_{1}} \\
P(|Y-\mu|>\epsilon \mu) & <\frac{\operatorname{Var}(Y)}{\epsilon^{2} \mu^{2}} \text { by Chebyshev }
\end{aligned}
$$

Therefore, if $s_{1}=\frac{8 c}{\epsilon^{2}}$, then $P(|Y-\mu|>\epsilon \mu)<\frac{1}{8}$.
Median of means: Now let Z be the median of s_{2} copies of Y. Let W_{i} be defined as follows:

$$
W_{i}= \begin{cases}1 & \text { if }|Y-\mu|>\epsilon \mu \\ 0 & \text { else }\end{cases}
$$

From the previous result about $Y, E\left(W_{i}\right)=\rho<\frac{1}{8}$. Therefore, $E\left(\sum_{i} W_{i}\right)<s_{2} / 8$. Moreover,
whenever the median Z is outside the interval $\mu \pm \epsilon, \sum_{i} W_{i}>s_{2} / 2$. Therefore,

$$
\begin{aligned}
P(|Z-\mu|>\epsilon \mu) & <P\left(\sum_{i} W_{i}>s_{2} / 2\right) \\
& \leq P\left(\left|\sum_{i} W_{i}-E\left(\sum_{i} W_{i}\right)\right|>s_{2} / 2-s_{2} \rho\right) \\
& =P\left(\left|\sum_{i} W_{i}-E\left(\sum_{i} W_{i}\right)\right|>\left(\frac{1}{2 \rho}-1\right) s_{2} \rho\right) \\
& \leq 2 e^{-\frac{1}{3} \cdot\left(\frac{1}{2 \rho}-1\right)^{2} \cdot s_{2} \rho} \text { by Chernoff bounds } \\
& <2 e^{-\frac{s_{2}}{3}} \text { when } \rho<\frac{1}{8}, \rho\left(\frac{1}{2 \rho}-1\right)^{2}>1
\end{aligned}
$$

Therefore, taking the median of $s_{2}=3 \log \left(\frac{2}{\delta}\right)$ ensures that $P(|Z-\mu|>\epsilon \mu)<\delta$.

2.2 Back to AMS

We use the medians of means approach to boost the accuracy of the AMS random variable X. For that, we need to bound the variance of X by $c \cdot F_{k}^{2}$.

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \\
& E\left(X^{2}\right)=
\end{aligned} \frac{m^{2}}{m} \sum_{i=1}^{n}\left[1^{2 k}+\left(2^{2 k}-1^{2 k}\right)+\ldots+\left(m_{i}^{2 k}-\left(m_{i}-1\right)^{2 k}\right] .\right.
$$

When $a>b>0$, we have

$$
a^{k}-b^{k}=(a-b)\left(\sum_{j=0}^{k-1} a^{j} b^{k-1-j}\right) \leq(a-b)\left(k a^{k-1}\right)
$$

Therefore,

$$
\begin{aligned}
E\left(X^{2}\right) & \leq m\left[k 1^{2 k-1}+\left(k 2^{k-1}\right)\left(2^{k}-1^{k}\right)+\ldots+k m^{k-1}\left(m_{i}^{k}-\left(m_{i}-1\right)^{k}\right)\right] \\
& \leq m\left[k m_{1}^{2 k-1}+k m_{2}^{2 k-1}+\ldots+k m_{n}^{2 k-1}\right] \\
& =k F_{1} F_{2 k-1}
\end{aligned}
$$

Exercise: We can show that for all positive integers $m_{1}, m_{2}, \ldots, m_{n}$,

$$
\left(\sum_{i} m_{i}\right)\left(\sum_{i} m_{i}^{2 k-1}\right) \leq n^{1-\frac{1}{k}}\left(\sum_{i} m_{i}^{k}\right)^{2}
$$

Therefore, we get that $\operatorname{Var}(X) \leq k n^{1-\frac{1}{k}} F_{k}^{2}$. Hence, by using the median of means aggregation technique, we can estimate F_{k} within a relative error of ϵ with probability at least ($1-\delta$) using $O\left(k n^{1-\frac{1}{k}} \frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$ independent estimators (each of which take $O(\log n+\log m)$ space.

3 A simpler sketch for F_{2}

Using the above analysis we can estimate F_{2} using $O\left(\frac{\sqrt{n}}{\epsilon^{2}}(\log n+\log m) \log \left(\frac{1}{\delta}\right)\right)$ bits. However, we can estimate F_{2} using much smaller number of bits as follows.

Suppose we have n independent uniform random variables $x_{1}, x_{2}, \ldots, x_{n}$ each taking values in $\{-1,1\}$. (This requires n bits of memory, but we will show how to do this in $O(\log n)$ bits in the next section). We compute a sketch as follows:

- Compute $r=\sum_{i=1}^{n} x_{i} \cdot m_{i}$
- Return r^{2} as an estimate for F_{2}.

Note that r can be maintained as the new elements are seen in the stream by increasing/decreasing r by 1 depending on the sign of x_{i}. Why does this work?

$$
\begin{aligned}
& E\left(r^{2}\right)=E\left[\left(\sum_{i} x_{i} m_{i}\right)^{2}\right]=\sum_{i} m_{i}^{2} E\left[x_{i}^{2}\right]+2 \sum_{i<j} E\left[x_{i} x_{j} m_{i} m_{j}\right] \\
&=\sum_{i} m_{i}^{2}=F_{2} \text { since } x_{i}, x_{j} \text { are independent, } E\left(x_{i} x_{j}\right) \text { is } 0 \\
& \operatorname{Var}\left(r^{2}\right)=E\left(r^{4}\right)-F_{2}^{2} \\
& E\left(r^{4}\right)=E\left[\left(\sum_{i} x_{i} m_{i}\right)^{2}\left(\sum_{i} x_{i} m_{i}\right)^{2}\right] \\
&= E\left[\left(\left(\sum_{i} x_{i}^{2} m_{i}^{2}\right)+\left(2 \sum_{i<j} x_{i} x_{j} m_{i} m_{j}\right)\right)^{2}\right] \\
&= E\left[\left(\sum_{i} x_{i}^{2} m_{i}^{2}\right)^{2}\right]+4 E\left[\left(\sum_{i<j} x_{i} x_{j} m_{i} m_{j}\right)^{2}\right]+4 E\left[\left(\sum_{i} x_{i}^{2} m_{i}^{2}\right)\left(\sum_{i<j} x_{i} x_{j} m_{i} m_{j}\right)\right]
\end{aligned}
$$

The last term is 0 since every pair of variables x_{i} and x_{j} are independent. Since $x_{i}^{2}=1$, the first term is F_{2}^{2}.

$$
\begin{aligned}
\operatorname{Var}\left(r^{2}\right) & =E\left(r^{4}\right)-F_{2}^{2}=4 E\left[\left(\sum_{i<j} x_{i} x_{j} m_{i} m_{j}\right)^{2}\right] \\
& =4 E\left[\sum_{i<j} x_{i}^{2} x_{j}^{2} m_{i}^{2} m_{j}^{2}\right]+4 E\left[\sum_{i<j<k<l} x_{i} x_{j} x_{k} x_{l} m_{i} m_{j} m_{k} m_{l}\right]
\end{aligned}
$$

Again, the last term is 0 since every set of 4 random variables is independent of each other. Therefore,

$$
\operatorname{Var}\left(r^{2}\right)=4 \sum_{i<j} m_{i}^{2} m_{j}^{2} \leq 2 F_{2}^{2}
$$

Therefore, by using the median of means method, we can estimate F_{2} using $\Theta\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$ independent estimates. However, the technique we presented needs $O(n)$ random bits. We will reduce this to $O(\log n)$ bits in the next section by using 4 -wise independent random variables rather than fully independent random variables.

$3.1 k$-wise Independent Random Variables

In the previous analysis, note that we only needed to use the fact that eveyr set of 4 distinct random variables $x_{i}, x_{j}, x_{k}, x_{l}$ are independent of each. We call a set of random variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ to be k -wise independent random variables if every subset of k random variables are independent. That is:

$$
\forall 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n, P\left(\wedge_{j=1}^{k} x_{i_{j}}=a_{j}\right)=\prod_{j=1}^{k} P\left(x_{i_{j}}=a_{j}\right)
$$

Example: Consider two fair coins x and y. Let z be a random variable that returns "heads" if x and y both lands heads or both land tails (think XOR), and "tails" otherwise. We can easily check that any pair of x, y and z are independent, but all x, y and z are not independent.

In the above F_{2} sketch, we only need the set of random variables X to be 4 -wise independent. We can generate $2^{n} k$-wise independent variables using $O(n)$ bits using the random polynomial construction (and thus generate each F_{2} estimate using $O(\log n)$ bits). The construction of 2-wise (or pairwise) independent random variables is shown below.

Consider a family of hash functions $\mathcal{H}=\left\{h_{a, b} \mid a, b \in\{0,1\}^{n}\right\}$, where each $h_{a, b}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is defined as follows:

$$
h_{a, b}(x)=a x+b
$$

That is a hash function is constructed by choosing a and b uniformly at random from $\{0,1\}^{n}$. All elements are hashed using $h_{a, b}$. The values resulting from applying \mathcal{H} to values in $\{0,1\}^{n}$ are 2^{n} pairwise independent random variables.

Lemma 1.

$$
\forall x, y, P(\mathcal{H}(x)=y)=2^{-n}
$$

Proof: Exercise

Lemma 2.

$$
\forall x, y, z, w P(\mathcal{H}(x)=y \wedge \mathcal{H}(z)=w)=2^{-2 n}
$$

Proof sketch: Consider any hash function $h_{a, b}$. Given hash values y, w for x, z respectively, we can find a unique solution for the linear system of equations involving a, b. Therefore, only one pair out of the $2^{-2 n}$ pairs will result in x, z hashing to y, w respectively. Therefore, the probability is $2^{-2 n}$.

We can also easily see that the resulting variables $\mathcal{H}(x)$ are not 3 -wise independent. For instance,

$$
P(\mathcal{H}(1)=2 \wedge \mathcal{H}(2)=3 \wedge \mathcal{H}(3)=100)=0
$$

This is because the first two has h value force $a=1, b=1$, and the third hash value is not possible using $h_{1,1}$.

The above construction can be extended to generate k-wise independent random variables by using random polynomials of the form $\sum_{i=0}^{k-1} a_{i} x^{i}$.

