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Understanding Data:
Theory and Applications

Lecture 11
Probabilistic Databases

Part-I

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu



What did we learn so far?
What will we learn?

DB Systems DB Systems + Theory DB Theory

Data Cube
Association rule mining

Provenance, Why-not,
Deletion propagation

Probabilistic,
Incomplete,
Inconsistent DB

Causality in DB, Stat, Al

Crowdsourcing
Usability

Systems for analytics
ML, Visualization, Large-scale 5




Lectures 11 and 12

* Probabilisticdatabases
— Introduction
— Simple tupleindependent model
— Query evaluation
— Complexity (#P-hardness)

e (QOther uncertain data model

 Materialand acknowledgement:

1.
2.

3.

Probabilisticdatabase book, Suciu-Olteanu-Re-Koch (up to chapter 5)

Dr. Benny Kimelfeld’s course on uncertain data:
http://webcourse.cs.technion.ac.il/236605/Spring2015/

EDBT/ICDT 2011 keynote by Dr. Dan Suciu:
http://homes.cs.washington.edu/~suciu/talk-icdt2011.pdf
Papers listed on the website




Uncertain Data

* Unreliable data acquisition processes and
noisy sources lead to uncertain data
— Surveys
— Crowd
— Faulty sensors
— Automatic text processing
— J. Doe: John? Jerry? Jacob? Jack?



Prob. DB book
Suciu-Olteanu-Koch-Re

Example

 NELL : Never Ending Language Learner (CMU)
— http://rtw.ml.cmu.edu/rtw/
— Running from 2010

— (Feb 2011) extracted 537k tuples of the form (entity,
relation, value)

* E.g. (Sony, ProducesProduct, Walkman)
— “Belief/confidence” with each tuple

— 87% of tuples had probability< 1.0 (= uncertain)
— Cannot just remove them (valuable info)

* Need a DBMS to understand and process uncertain
data



Levels of Uncertainty

* Tuple-level
— Each tuple is a random variable
— E.g. NELL
— Every tuple has an associated belief/confidence
e Attribute-level uncertainty
— Value of an attribute is a random variable
— Each choice has an associated probability Pr[A = a]



Probabilistic Databases

e Uncertain Data

* Howto

— Conceptualize?
* Semantic

— Represent and store?

* Syntax

* Assumptions

» Restricted uncertain data models
— Evaluate Query?

* Semantic

* Complexity



Prob DB: Possible World Semantics

e The database instance can be in one of several
states

— Each state has a probability
* ProbDBD

— States

—D1:p1

— D2: p2

* 2pi=1



Prob DB: Possible World Semantics

A probabilisticdatabaseis

— a probability space D= (W, P)
— P:W->(0, 1]

— ST SwewP(W) =1

D =(Ry, ..., Ry)
W = (W2, ..., W)
Wi=Ry, ..., R

The marginal probability of a tuple = tuple confidence
— P(t € Rj) = Jieriji=1.n P(W))

Whatis a good representation?
— Nell has 537k “uncertain tuples”
— 2537000 states/possible worlds!

Whatis the query semantic?



Query

Union of Conjunctive Queries

Q:=R(x1,..xk) | Ix.Q] Q1 /AQ2]|Q1VQ2

— Baserelationn | project | join | union

Q(x, y) := R(x) S(x, y) T(y)
— Not shown /\

Q() :== 3 x 3 yR(x) S(x, y) T(y)

Q():= I x FyR(x)S(x,y) V T x T yS(x,y) T(y)
— Boolean query (answeris T or F)

— Consideredin this lecture wlog. (Why?)
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Two Query Semantics

* |nputD= (W, P), QueryQ
— W= (WL, W)

 “Possible answerset” semantic
— Output: (Q(W1), ..., Q(W"))
— Too many answers
— But “compositional”
e anotherqueryQ
* Output (Q(Q(W?)), ..., Q(Q(W")))
* “Possible answers” semantic
— Output Q(D), a single set of tuples with a distribution
— Much smaller
— But not compositional
* We lost track of howthey were produced



ICDT 2011 keynote -Suciu

What are Prob DB systems?

* Prototypes in academia:
— MayBMS (Oxford&Cornell)
— Trio (Stanford)
— MystiQ (UW)
— ProbDB (Maryland)
— Orion (Purdue)

* NO commercial systems
— We do not know how to build scalable prob db systems
— Query evaluation in prob db is computationally hard
— Even for tuple-independent Prob DB



Boolean query Q: Ix3IAyR(x) A S(x,y) A T(y)

X1 al

0.3

X3 a2

0.4

* Xx,v,z {0, 1} randomvariables with probabilityin (0, 1]

* Pr[Fqp] =the probability that query Qis true on database D
= ZD'EW, QD) =T P(D’)

Y1
Y2
Y3

al bl
al b2
a2 b2

0.7

0.5
0.2

Z;

Z;

Provenance Fq p, = X;1Y12; + X;1Y,2Z;, + X,Y32;

Tuple Independent Prob DB

bl

b2

— Canuse Pr[yz] = Pr[y] Pr[z] and Pr[y + z] =1 — (1 — Pr[y])(1 — Pr[z])
— Compactrepresentation thatmatches the possible world semantic

0.2
1.0
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Query Evaluation in
Tuple Independent Prob DB

Boolean query Q: Ix3IAyR(x) A S(x,y) A T(y)

X al 0.3 i al bl 107 2 bl 0.2

X2 a2 0.4 Y2 al b2 |05 22 b2 1.0
V3| a2 b2 0.2

Provenance Fq p, = X;1Y12; + X;1Y,2Z;, + X,Y32;

* Step 1: Compute provenance Fq p
— Easy = poly-time “data complexity”
* Review: Datavs. Query Complexity
* Step 2: Compute Pr[Fq p]
— #P-Hardingeneral

— There are “easy formulas”, e.g. read-once formulas x(y + z)
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X1

Xz

FO Formula vs. Propositional Formula

al

a2

0.3
0.4

— Equiv.to
R(a;)S(a; ,by)T(b;) V R(a;)S(ay,b,)T(b,) V' R(a,)S(a; ,b,)T(b,)

— “Grounding” of the FO formula

Y1
Y2
Y3

al bl
al b2
a2 b2

Provenance Fq p = X1Y121 + X1Y,Z, + X3Y32Z;
Propositional formula

0.7

0.5
0.2

BooleanqueryQ: dx3dyR (x)AS(x,y)AT(y)
First-Order formula

Z;

Z;

bl

b2

0.2
1.0
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Model Counting Problem

Model counting
* Given a propositional formula ¢, count the number of
satisfying assignments #¢

— Eg.d=xy+yz, H#p=3
— Aside: the above formulais read-once,i.e. hasaread-once form:
y(x+z) where every variable appears exactly once. Discussion on board.

— Model countingis easy (poly-time) for read-once formulas

Weighted model counting/probability computation
* Assumingindependenceand given Pr[x] for all variables x in
d, compute Pr[d]

— As hard as model counting
— Assume weight = % for all variables. Then #¢ = 2" Pr[¢]
— Note: 2" is represented usingn bits, so multiplication in poly-time |,



P

A complexity class introduced by Valiant (1979)

Given a poly-time non-deterministic Turing maching,
compute the #accepting computation

Model counting problem: #SAT = compute #¢ for a
formula ¢ is in #P

— #SAT answers SAT

— Checkif #p >0

#P-hard problems: #3SAT, #2SAT, #2DNF

Note: 3SAT is NP-hard but, DNF, 2SAT are not
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Reduction from PP2DNF

PP2DNF:

— A propositional formula F is a Positive, Partite, 2DNF if F =
Vi XiYj

— Example:
F=X1Y1V X1Y2V X2Y3V X2Y4V X2Y5

For PP2DNFs &, #¢ is #P-hard (Provan-Ball’83)
Follows that prob. Query evaluation for
H, = R(x) S(x,y) T(y) is #P-hard

Reduction on whiteboard
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Extensional vs. Intensional g S

Consider
— Query Q():- R(x) S(x, y), Database D
— GroundingFq p = R;S;; + RiS15+ R,S;; + R,S,,

1 1
Query Evaluation : B
2 1
2 2

Extensional query evaluation

— Entirelyguided by query expression Q

— Computesa “safe plan”if possible—works forall D
— Possible onlyforsome query (like above)

Intensional query evaluation

— First compute F, then compute Pr[F]

— Possibleforall queries

— Can perform worse than extensional query evaluationin some cases

Aside: extensional and intensional databases 15



Dichotomy [Dalvi-Suciu]

A series of papers
— VLDB’04 (10-years test-of-time award in VLDB’14)

— PODS 07,10
— JACM ’12 (includes all), also the book

* ForanyUCQQ
— Either for all D, Pr[Q(D)] can be computed in poly-time

— Or, evaluation of Pr[Q(D)] is #P-hard
— JACM 2012, PODS 2010
— Uses “Mobius ring”

* Asimplerprooftoday/nextlecture from VLDB ‘04
— Dichotomy for “CQ without self-join”
— Q(): - R(x, y)R(y, z) query with self-join
— Q():- R(x,y) S(y, z) no self-join (no repeated relation symbol)
— Notation: CQ-



Hierarchical Query

Consider CQ-Q

— E.g.QL() - R(x) S(x, y) T(y), Q2() :- R(x) S(x, y)
For a variable x € vars(Q),

— Let Atoms(x) = {a € Atoms(Q) | x € vars(a)}

— InQ1, Atoms(x) = {R, S}, Atoms(y) ={S, T}

— In Q2, Atoms(x) = {R, S}, Atoms(y) = {S}
Hierarchical query Q: If for every two variablesxand yin Q, atleast one
below holds:

— Atoms(x) < Atoms(y)

— Atoms(y) < Atoms(x)

— Atoms(x)NnAtoms(y)=2
Q2 is hierarchical, Q1 is not

A root variable of Q is a variable x & vars(Q) such that

— Atoms(x) is maximal w.r.t. set containment

— Which are the root variablesin Q2
If Qis hierarchical, then everysubquery of Q (subset of Q’s atoms) s
hierarchical =



Dichotomy for CQ-

* Hierarchical query: poly-time
— By extensional evaluation

* Not hierarchical: #P-hard
— Stepl: Hy() :- R(x) S(x, y) T(y) is hard
* proved
— Step2: Any non-hierarchical query reduces to H,

* To be continued in Lecture 12
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