CompSci 590.6

Understanding Data:
Theory and Applications

Lecture 12

Probabilistic Databases
Part-l|

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu

Announcement

* Review#3
— will be replaced by a homework

e Review#h

— Hands-on experience on one data-analytics system of
your choice (listed or not-listed on the course website)

* Install,choose a dataset, run queries, write about your
observation and attach the graphs/tables (< 1 page)

* You can try to use it foryour project
— You may want to start early

Review: Lecture 11

e Part-l of probabilisticdatabases

Probabilistic DB overview

Possible world semantic

Compactrepresentation fortupleindependent databases
Extensionaland intensional query evaluationin prob. Db.
Complexity class #P

#P-hardness proof for Hy() :- R(x) S(x, y) T(y)

 Materialand acknowledgement:

1.
2.

3.

Probabilisticdatabase book, Suciu-Olteanu-Re-Koch (up to chapter5)

Dr. Benny Kimelfeld’s course on uncertain data:
http://webcourse.cs.technion.ac.il/236605/Spring2015/

EDBT/ICDT 2011 keynote by Dr. Dan Suciu
Papers listed on the website

Today: Lecture 12

Dichotomy for CQ- (no self join, no union)

* Any CQ-Q s
— Either “safe”, i.e. a “safe query plan” exists that can
compute Pr[Q(D)] in poly-time for all D
— Or “unsafe”, #P-hard
e Still Pr[Q(D)] can be computedin poly-timefor some D
* Recall “read-onceformulas” as provenance
* There aregeneralized “knowledge compilation forms”
BDD, OBDD, FBDD, dec-DNNF, d-DNNF
Not covered in this course

Safe/Unsafe Plans: Join X
]

A B

al bl x1 | 0.3
a2 bl x2 | 0.2
a2 b2 x3 | 0.9

q(XI Y, Z) . R(XI y) S(yl Z)
Plan for q
— Return RIS
— Multiply probabilities
— Annotation variables are only shown
for convenience

Plans should also generate
probabilitiesof output tuples

Is this plan
— safe (correct)?
— unsafe (wrong)?

B C

bl cl vyl 0.6
b2 cl y2 0.5
b3 c2 y3 0.4

A B C

al bl cl xlyl | 0.3 *0.6
a2 bl cl x2yl | 0.2 *0.6
a2 b2 cl x3y2 | 0.9*0.5

Safe/Unsafe Plans: Join X
]

A B

al bl x1 | 0.3
a2 bl x2 | 0.2
a2 b2 x3 | 0.9

CI(X, Y Z) .- R(XI Y) S(yl Z)

Safe Plan forq

— ReturnRIX'S
— “IndependentJoin”

— Multiply probabilities

— Pr[x1x2..] = Pr[x1]Pr[x2]...

No projection:returnany plan
— E.g.3relnR,S, T

— Return(RDIS) DX T

or RX(S X T)

B C

bl cl vyl 0.6
b2 cl y2 0.5
b3 c2 y3 0.4

A B C

al bl cl xlyl | 0.3 *0.6
a2 bl cl x2yl | 0.2 *0.6
a2 b2 cl x3y2 | 0.9*0.5

Safe/Unsafe Plans: Project I

A s]

A
al bl x1 0.3

al x1 0.6
a2 bl x2 0.2

a2 X2 +x3 1-(1-0.2)(1-0.9)
a2 b2 X3 0.9

* q(x) :- R(x, y)
e Safe Plan for g
— Return laR
— “Independent project”
— Apply Prix1 +x2 +....] =1 —(1 — Pr[x1])(1 —Pr[x2])...

Safe/Unsafe Plans
Join > + Project I

d

A B B C

al bl x1 | 0.3 bl cl yl | 0.6
a2 b2 x2 | 0.2 bl c2 y2 | 0.5
a2 b3 X3 0.9 b2 c2 y3 0.4

al bl cl xlyl | 0.3 *0.6
al bl c2 x1y2 | 0.3*0.5
a2 b2 c2 x2y3 | 0.2*0.4
Mpp(RDIS)
A B
al bl | x1lyl+xly2 | 1-(1-0.18)(1-0.15)
a2 b2 x2y3 0.8

a(x, y) :- R(x, y) S(y, z)
Plan-1

* =M (RDRS)
Step 1:

— q1=R XS

— Independentjoin
Step 2:

— q=1I,gql

— Independent project?
— Wrong!!

— x1yland x1y2 are
NOT independent
events

Plan-1 is NOT SAFE .

Join DX + Project I
R d

Safe/Unsafe Plans

A B B C
al bl x1 | 0.3 bl cl yl | 0.6
a2 b2 x2 | 0.2 bl c2 y2 | 0.5
a2 b3 X3 0.9 b2 c2 y3 0.4
Mg S
B
bl yl+y2 1-(1-0.6)*(1-0.5)=0.8
b2 y3 0.4

RD<l 4(Mg S)

A B
al bl x1 (y1+y2) 0.3*0.8
a2 b2 x2y3 0.2*0.4

a(x, y) :- R(x, y) S(y, z)
Plan-2

* q=RD<(MgS)
Step 1:

— ql=M;3S

— Independent project
Step 2:

— q=RIX4;ql

— Independentjoin

— Correct!!

— x1and(yl+y2) ARE
INDEPENDENT
EVENTS

Plan-2 is SAFE! .

The right (= safe) plan matters

If the planis right = SAFE, we compute the correct
probabilitiesas we go along
— Note: NO NEED TO COMPUTE THE PROVENANCE EXPRESSIONS

The “Safe-Plan” algorithm by Dalvi-Suciu’04 makes sure that if
a planis returned, then it is SAFE

What if the algorithm fails?

— Then NO SAFE PLAN exists
— Further, the queryis then #P-hard!

This gives a dichotomyon CQ-

10

Notations

Attr(q) = Set of all attributes in all relations in g

Head(q) = Set of attributes that are in output of
the query g

q(X, y) .~ R(X, y) S(y, Z)
Attr(q) = {x, v, z}
Head(q) ={x, y}

11

Extensional Operators

, 228 Pry(t) if ct) is true
Pry«pn(t) = , 0 Lo\ i ol
0 if o{t) is false
Praem(t) = 1 H (1 - Pry(t))
el 4 (8 ¢
Pr ¢ t) Prg(t) x Pry(t')

* Select
* Independent Project
* Independent Join

12

Algorithm

Algorithm 1 SAFE-PLAN(q)

if Head(q) = Attr(q) then
return any plan p for ¢
(p is projection-free, hence safe)
end if
for A € (Attr(q) — Head(q)) do
let g4 be the query obtained from ¢
by adding A to the head variables
if Tjieaaiq)(ga) is a safe operator then
return I, ... (SAFE-PLAN(gA))
end if
end for
Split ¢ into q; X. g2 (see text)
if no such split exists then
return error(“No safe plans exist”)
end if
return SAFE-PLAN(q;) X. SAFE-PLAN(q2)

13

Algorithm

* Example
Algorithm 1 SAFE-PLAN(qg) — q(x,y) - R(x, y) S(x, y)
if H('(Id(q] = .*"tt?‘{(}} then Y Retu rn any plan
return any plan p for ¢
(p is projection-free, hence safe) — Eg. =R X S
end if
for A € (Attr(q) — Head(q)) do
let g4 be the query obtained from ¢ ° HOW to com pute
by adding A to the head variables “re
if ;i caara1(ga) is a safe operator then o ba b| I It ?
T rcad(a) (SAFE-PLAN(g4)
return cad(a) (SAFE-PLAN(g4)) .
endif @ — Just multiply
end for

— Why is this correct?

Split g into q; X, g2 (see text)
if no such split exists then
return error(“No safe plans exist”)

end if «“ .
return SAFE-PLAN(q;) X. SAFE-PLAN(q2) * In general’ . Flf’nCtlonaI
dependencies” matter

14

Functional dependencies (FD)

e X->Y

— X, Y subset of attributes

— Anyassignment of values to X uniquely determines the value of Y
* E.g.

— A->A

— AB->A

— A->ABinarelation R(A, B) if Ais a “key”

— X->YandY->ZimplyX->Z

— eftc
* WhataresomeF.D.Tina probdb?

— E.g. R.attr-> R.E (E = event expression), foranyrelation R

— R.E->R.attr(if R is a baserelation)

— For every join predicateRi.A=Rj.Binq

e Both Ri.A -> Rj.B and Rj.B ->Ri.A arein(q)

Safe Operators

e Selections andjoins (for CQ-) are always safe
— Subsequent operators can be unsafe
— Need to be careful forJoins

Projection
For g, projecting to a subsetof head variables Al,...,Ak is safe

— if for every probabilisticrelation Rin the body,

— thereisan FD Al,...,Ak, R.E -> Head(q)
— E =“event” (= provenance) attribute of all tables

e Why?

— Projectionto Al,...,Ak < disjunction of all tuples that have the same
values of {A1,...,Ak}
— To beindependent (i.e. input contributes to unique output?, eaﬁh
esthat

event from each table must be sufficient to distinguish tup
contribute to the output

16

Safe Operators
Join
 Want to split g into g1 DX g2 “safely”

* Next: define separation among relations

Separation

CQ-q
Connected and Separate Relations
— Two relations Ri, Rj € Rels(q) are called connected if
— g hasajoinconditionRi.A=Rj.B
— Andeither Ri.Aor Rj.Bis NOT in Head(q)
— Ri, Rjare separateifthey are not connected

Separation
— Two sets of relationsR1and R2 is a separationfor q if
— They partition the set Rels(q)
— AllpairsRi € R1 and Rj € R2 are separate

See the journalversionin VLDB 2007 (click here)

Constraint graph for separation

Graph G(q)
Nodes are rels(q) = relations in g

Edges are pairs (Ri, Rj) such that Ri, Rj are
connected

Find the connected components of G(q)

If G(g) is a connected graph (= 1 component)
— No separation/split is possible

Otherwise

— Split in any fashion

— Can use cost-based optimization

19

Separation Examples

* q1() :- R(A), S(B, C), T(C)

— GraphG(ql1):R-S-T

— One connected component, no split possible
e q(B,C, D) :-S(A, B), T(C,D),B=C

— Both join attributes B, C appearin head

— NOTE the algo: fora join, either both attributes presentor none
are present

* Otherwise a safe projection will be possible
— S, T are separated, no edge
— Split possible
— q=91(B) ™. q2(C, D)
— q1(B) :- S(A, B)
— q2(C, D) :-T(C, D)

Safe Plan Algorithm

Top-Down
Push all safe projections late in the plan
— i.e. apply early

When you can’t, split the query g into two
sub-queries q1 and g2 such that their join is g

— if possible

If stuck, the query is unsafe

Algorithm

e Example on whiteboard

Algorithm 1 SAFE-PLAN(qg)

if Head(q) = Attr(q) then
return any plan p for ¢

= (l]; is projection-free, hence safe) q(D) . S(A, B), T(C, D), B — C

for A € (Attr(q) — Head(q)) do
let g4 be the query obtained from ¢
by adding A to the head variables
if ;i caara1(ga) is a safe operator then . .
rcturnl'ﬂumdl_,ﬁ(S.-\FF.—PI.A.\'(QA]} ° Flnal Safe Plan .
end if
S ot Mp((MgS) < T)
Split g into q; X, g2 (see text)
if no such split exists then
return error(“No safe plans exist”)
end if
return SAFE-PLAN(q:) X. SAFE-PLAN(q2)

22

Dichotomy

All below are equivalent

1. g contains three subgoals of the form
L(x,), J(X, ¥,), R(y,) where x, y not in Head(q)
2. qis #P-hard

3. The Safe-plan algo fails

e 2 =>3 s obvious (from the correctness of the algo)

e 3 =>1 needs a detailed analysis
— Proof in the full journal version in VLDB 2007 (click here)
e 1=>2next

23

Hierarchical Query

Consider CQ-Q

— E.g.QL() - R(x) S(x, y) T(y), Q2() :- R(x) S(x, y)
For a variable x € vars(Q),

— Let Atoms(x) = {a € Atoms(Q) | x € vars(a)}

— InQ1, Atoms(x) = {R, S}, Atoms(y) ={S, T}

— In Q2, Atoms(x) = {R, S}, Atoms(y) = {S}
Hierarchical query Q: If for every two variablesxand yin Q, atleast one
below holds:

— Atoms(x) < Atoms(y)

— Atoms(y) < Atoms(x)

— Atoms(x)NnAtoms(y)=2
Q2 is hierarchical, Q1 is not

For Boolean CQ-, Hierarchical queries <> Safe queries

24

Not hierarchical: #P-hard

* Stepl: Hy() :- R(x) S(x, y) T(y) is hard
— Proved in Lecture 11

* Step2: H, reduces to any non-hierarchical
query

25

Non-hierarchical CQ-: Step 2

Reductionfrom Hy=R(x), T (x, y), S(y) to Q
We can choose variablesxand y and atoms ax, ay and axy such
that:
— x € vars(r,), y &vars(r,) (== notin)
— y € vars(r,) and x &-vars(r,)
— x,yEvars(r,)
Q = U(x,z), V(x,u), W(x,y,z), Y(y,a)
- n=Ur=Yr,=W
Reductionidea: On whiteboard
— U, Y, W gets the same+extended tuplesasinR,S, T
— Other relations (e.g. V) are deterministic
— Map all variables/attributes otherthan x, y to a new constant c
— Note: “@” in Y(y, a) has to be unchanged.
— Identical “provenance”

26

Approximations

e “Exact” evaluation is hard

* Approximation is always possible for UCQ

— But even approximation may be impossible if the
guery has negation

e Extensionsto DNF counting approx algo by
Karp and Luby’1983

27

Later in “TBD” lectures

* Probabilistic Relational Model
— Probabilistic Soft Logic
— Markov Logic Network

28

