# CompSci 590.6 Understanding Data: Theory and Applications

Lecture 16

Causality in Databases

Instructor: Sudeepa Roy

Email: sudeepa@cs.duke.edu

### Today's Reading

#### Meliou-Gatterbauer-Moore-Suciu

**PVLDB 2010** 

The Complexity of Causality and Responsibility for Query Answers and Non-Answers

#### Optional reading:

Meliou-Gatterbauer-Nath-Suciu

**SIGMOD 2011** 

Tracing Data Errors with View-Conditioned Causality

#### Acknowledgement:

Most of the slides in this lecture are originally due to Dr. Alexandra Meliou, University of Massachusetts-Amherst, and have been updated here

#### Review:

#### Pearl's Structural Causal Model

- Model M = (U, V, F)
  - E.g., The house is burnt due to Fire A or Fire B
- Endogenous variables U:
  - Variables within the model and are used as potential causes
  - Fire A reaches the house (A)
  - Fire B reaches the house (B)
  - The house is burnt (Y)

#### Exogenous variables V:

- Variables outside the model, not potential causes
- Oxygen in the air, heavy rain
- Structural equations F
  - How endogenous variables are affected due to exogenous and other endogenous variables
  - Y = A V B



#### Review:

#### Counterfactual vs. Actual Cause

#### **Counterfactual Cause:**

- If <u>not A</u> then <u>not φ</u>
  - In the absence of a cause, the effect doesn't occur

$$C=A\wedge B, \quad A=1\wedge B=1 \quad \longrightarrow \quad \text{Both (A = 1) and (B = 1) are counterfactual for (C = 1)}$$

#### **Actual Cause:**

 A variable X is an actual cause of an effect Y if there exists a contingency that makes X counterfactual for Y

$$C = A \lor B$$

$$\uparrow$$
(A = 1) is a cause of (C = 1)
$$A = 0, B = 1 \Rightarrow C = 1$$

$$A = 0, B = 0 \Rightarrow C = 0$$

$$A = 0, B = 0 \Rightarrow C = 0$$

$$A = 0, B = 0 \Rightarrow C = 0$$

$$A = 0, B = 0 \Rightarrow C = 0$$

$$A = 0, B = 0 \Rightarrow C = 0$$

$$A = 0, B = 0 \Rightarrow C = 0$$

$$A = 1$$
,  $B = 1 \Rightarrow C = 1$ 

$$A = 0$$
,  $B = 1 \Rightarrow C = 1$ 

$$A = 0$$
,  $B = 0 \Rightarrow C = 0$   
and  $A = 1$ ,  $B = 0 \Rightarrow C = 0$ 

A alone does not change C

A changes C when B = 0B = 1 to 0 does not change C

### Review: Responsibility

$$\rho = \frac{1}{1 + \min_{\Gamma} |\Gamma|} - \frac{\text{size of the}}{\text{contingency set}}$$

- Measures the "degree of causality"
  - Larger contingency implies a smaller degree of causality
- Counterfactual causes have the most contribution
  - empty contingency set

#### **Example**

$$Y = A \land (B \lor C)$$

A=1 is counterfactual for Y=1 ( $\rho$ =1)

B=1 is an actual cause for Y=1, with contingency C=0 ( $\rho$ =0.5)

### Causality in Databases

- How to model the causal concepts from Pearl's model in terms of concepts in databases?
- i.e. model
  - Endogenous and exogenous variables
  - Actual and Counterfactual causes
  - Responsibility

#### in terms of

- database/relations/tuples
- queries
- lineage/provenance
- Why?
  - Responsibility of tuples will help in error tracing and explanations

### Motivating example: IMDB dataset

#### **IMDB** Database Schema

Actor lastNamefirstNameaidDirector firstNamedidlastNameMovie midranknameyear Movie\_Directors Genre didmidmidqenreCasts aidmidrole

Query



#### What can databases do

#### **Provenance / Lineage:**

The set of all tuples that contributed to a given output tuple

[Cheney et al. FTDB 2009], [Buneman et al. ICDT 2001], ...

#### But

In this example, the lineage includes 137 tuples !!

From provenance to causality



Goal:

Rank tuples in order of importance

 A cause of an answer/non-answer is an input tuple

Rank them by their responsibility

| Kanking 110 venance                          |         |  |
|----------------------------------------------|---------|--|
| Answer tuple                                 | $ ho_t$ |  |
| Movie(526338, "Sweeney Todd", 2007)          | 0.33    |  |
| Director(23456, David, Burton)               | 0.33    |  |
| Director(23468, Humphrey, Burton)            | 0.33    |  |
| Director(23488, Tim, Burton)                 | 0.33    |  |
| Movie(359516, "Let's Fall in Love", 1933)    | 0.25    |  |
| Movie(565577, "The Melody Lingers On", 1935) | 0.25    |  |
| Movie(6539, "Candide", 1989)                 | 0.20    |  |
| Movie(173629, "Flight", 1999)                | 0.20    |  |
| Movie(389987, "Manon Lescaut", 1997)         | 0.20    |  |

### Endogenous/exogenous tuples

#### Partition the data D into 2 groups:



- Exogenous tuples: D<sup>[x]</sup>
  - tuples that we consider correct/verified/trusted
  - not potential causes
  - E.g. the Genre, and Movie\_Director tables
- Endogenous tuples: D<sup>[n]</sup>
  - Untrusted tuples, or simply of interest to the user
  - potential causes
  - E.g. the *Director* and *Movie* tables
- This division can be application-dependent and decided during the run time
  - e.g. set movie tuples with year > 2008 to be endogenous

### Causality of a query answer

Input: database D and query Q. Output: D'=Q(D)

• D<sup>[n]</sup> endogenous tuples, D<sup>[x]</sup> exogenous tuples

- $t \in D^n$  is a counterfactual cause for answer  $\alpha$ 
  - If  $\alpha \in Q(D)$  and  $\alpha \not\in Q(D-t)$

- $t \in D^n$  is an actual cause for answer  $\alpha$ 
  - If  $\exists \Gamma \subset D^n$  such that t is counterfactual in  $D-\Gamma$

### Example

Lineage expression:

$$q:-R(x,a_3),S(a_3)$$

Boolean query answer = true

$$r_1 s_1 + r_2 s_1$$
  
=  $s_1 (r_1 + r_2)$ 

Responsibility:  $\rho_t = \frac{1}{1 + \min_{\Gamma} |\Gamma|}$ 

#### Database:



 $\rho_{s_1} = 1$ 

$$\rho_{r_2} = \frac{1}{2}$$

 $\Gamma_{s_1} = \emptyset$ 

$$\Gamma_{r_2} = \{r_1\}$$

Assume all endogenous

NOTE: If  $r_1$  is exogenous,  $r_2$  is not a cause.

### Causality for database queries

Input: Database D and query Q

Output: D'=Q(D)

#### Causal network:

Lineage of the query



### Causality in Al vs. databases



So far "why-so" causality – explain an answer Dual: "why-no" causality – explain a non-answer

### Why-no causality

- Given database D<sup>[x]</sup>
- Query answer Q(D<sup>[x]</sup>)
- Non-answer p ∉ Q(D<sup>[x]</sup>)
- Real database  $D = D^{[x]} \cup D^{[n]}$ 
  - D<sup>[n]</sup> = missing endogenous tuples (recall missing answers)
- Counterfactual cause  $t \in D^{[n]}$ 
  - if  $p \in Q(D^{[x]} \cup \{t\})$
- Actual cause t with contingency  $\Gamma \subseteq D^{[n]}$ 
  - if t is a counterfactual cause for  $D^{[x]} \cup \Gamma$

#### Problems to solve

Given D =  $D^{[x]} \cup D^{[n]}$ , query q, a potential answer/non-answer p

- Causality
  - Compute the set  $C \subseteq D^{[n]}$  of actual causes for p
- Responsibility
  - For each actual cause  $t \in C$ , compute its responsibility

Consider Boolean query without loss of generality e.g. q():- R(x, y), S(y)

Causes: that can change "true" to "false"

### **Overview: Complexity Results**

|           | answers    | non-answers |  |
|-----------|------------|-------------|--|
|           |            |             |  |
| Causality | Why So?    | Why No?     |  |
| w/o SJ    | PTIME (CQ) | PTIME (FO)  |  |
| with SJ   | PTIME (FO) |             |  |

| Respons      | sibility   | Why So? | Why No? |  |
|--------------|------------|---------|---------|--|
| w/o SJ       | linear     | PTIME   |         |  |
| <i>mo</i> 50 | non-linear | NP-hard | PTIME   |  |
| with SJ      |            | NP-hard |         |  |

### **Problem 1: Causality**

- Goal: compute all actual causes by a Boolean query q
- Let φ be the lineage (provenance) of q
- $\varphi^{[n]}$  = set all exogenous tuples to true (= 1) in  $\varphi$ 
  - n-lineage
  - depends only on endogenous tuples
  - apply absorption: r + rs = r

#### Theorem:

The following three conditions are equivalent

- 1. An endogenous tuple t is an actual cause for q
- 2. There are endogenous tuples  $\Gamma$  such that
  - $\varphi$  [u = 0, u  $\subseteq$   $\Gamma$ ] is satisfiable
  - $\varphi$  [u = 0, u  $\subseteq$   $\Gamma$ ; t = 0] is unsatisfiable
- 3. There is a conjunct (after absorption) in  $\varphi^{[n]}$  containing t

### Example

#### Query:

$$q:-R(x,a_3),S(a_3)$$

#### Database:

|                | $\mathbf{R}$ |           |  |
|----------------|--------------|-----------|--|
|                | X            | $oxed{Y}$ |  |
| r <sub>1</sub> | $a_1$        | $a_5$     |  |
| $r_2$          | $a_2$        | $a_1$     |  |
| r <sub>3</sub> | $a_3$        | $a_3$     |  |
| r <sub>4</sub> | $a_4$        | $a_3$     |  |
| r <sub>5</sub> | $a_4$        | $a_2$     |  |

| $s_1$                 |
|-----------------------|
| S <sub>2</sub>        |
| S <sub>3</sub>        |
| S <sub>4</sub>        |
| <b>S</b> <sub>5</sub> |
|                       |

### Ex 1: The set of actual cause $C = \{r_3, r_4, s_3\}$

Ex 2: Suppose r<sub>4</sub> is exogenous

Then φ<sup>[n]</sup>

= 
$$r_3s_3 + s_3$$
  
=  $s_3$  (absorption)

The only actual cause is

$$C = \{s_3\}$$

Further, the actual causes C can be computed by a SQL query

#### Provenance/Lineage?

$$\phi = r_3 s_3 + r_4 s_3$$

Assume conjunctive queries with no self joins

$$q:-R(a,y)$$

A simple case:

The lineage of q will be of the form:

$$R(a,a) \vee R(a,b) \vee R(a,c) \vee \dots$$

What is the responsibility of t = R(a, b)

$$\Gamma_t = \{R(a, y) | y \neq b\}$$

**PTIME** 



A cut in the graph: interrupts the s-t flow.

Min-cut: a cut with min capacity

- can be computed in PTIME (e.g. Ford-Fulkerson)
- never includes the edges from s or to t (capacity = ∞)

Any mincut corresponds to a minimal set of tuples  $\Gamma'$  so that q is false on D –  $\Gamma'$ 

#### More interesting:

$$q:-R(x,y),S(y,z)$$



#### To compute responsibility of t:

- The mincut  $\Gamma'$  must include t, i.e.  $\Gamma' = \{t\} \cup \Gamma$
- Set the capacity of t to 0

#### For all s-t paths p that go through t

- set the capacities of all edges in p − {t} to ∞
- compute the size of the mincut
- reset the capacity back to 1
- here two paths  $x_1y_2z_1$  and  $x_1y_2z_2$

Poly-time?



(R tubles)

Claim: if  $\Gamma'$  is a mincut,  $\Gamma = \Gamma' - \{t\}$  is a contingency for t

- q is false on D Γ'
  - s and t are disconnected
- q is true on D Γ' ∪ {t}
  - Add t back, along with the edges in path p, a path from s to t is restored

(S tuples)

the edges on p have ∞ capacity, cannot belong to Γ'

More interesting:

$$q:-R(x,y),S(y,z)$$



Claim: if  $\Gamma'$  is a mincut,  $\Gamma = \Gamma' - \{t\}$  is a contingency for t

Therefore, repeating over all paths, we can compute the minimum contingency set and responsibility for t

Q. what are other queries for which this trick works?

A. Linear queries

$$q:-R_1(x_1,x_2), R_2(x_2,x_3), R_3(x_3,x_4), \dots$$

## Linear Queries and Query Dual Hypergraph

$$q: -A(x)S_1(x,v)S_2(v,y)B(y,u)S_3(y,z)D(z,w)C(z)$$



#### **Definition:** Linear Queries

There exists an ordering of the nodes (relation names) of the dual hypergraph, such that every hyperedge is a consecutive subsequence.



Query dual hypergraph

#### Theorem:

Computing responsibility for all linear queries is in PTIME.







None of these are linear

### Responsibility: Hard Queries



If unspecified, it could be either



### Responsibility dichotomy

|          | PTIME                            |             | NP-hard                      |
|----------|----------------------------------|-------------|------------------------------|
| $q_1 :-$ | R(x,y), S(y,z)                   | $h_1^* :-$  | A(x), B(y), C(z), W(x, y, z) |
| $q_2 :=$ | $A(x)S_1(x,v), S_2(v,y),$        | $ h_2^* :-$ | R(x,y), S(y,z), T(z,x)       |
|          | $B(y,u), S_3(y,z), D(z,w), C(z)$ | $h_3^* :-$  | A(x), B(y), C(z),            |
|          |                                  |             | R(x,y), S(y,z), T(z,x)       |









Any query w/o self-join either reduces to an easy query or has a reduction from a hard query by weakening

### **Proof Sketch: Dichotomy**

#### Weakening:

- if q<sub>4</sub> is PTIME, so is q<sub>3</sub>
- q<sub>3</sub> is "weakly linear"

#### Rewriting:

- if q<sub>2</sub> is hard, so is q<sub>1</sub>
- if no more rewriting possible,
   then one of h\*<sub>1</sub>, h\*<sub>2</sub>, h\*<sub>3</sub>
- q<sub>1</sub> is NOT weakly-linear



28

### Example: Weakenings (for PTIME)



### Example: Rewriting (for NP-hardness)

$$q := R(x, y), S(y, z), T(z, u), K(u, x)$$

$$\rightarrow$$
 R(x, y), S(y, z), T(x, z, u), K(u, x)

add x: add variable x to all atoms that contain u provided there is an atom containing both x and u

$$\rightarrow$$
 R(x, y), S(y, z), T(x, z, u), K(u, x, z)

$$\rightarrow$$
 R(x, y), S(y, z), T(x, z, u)

delete K: if K is exogenous or if there is an atom T (here) such that  $var(T) \subseteq var(K)$ 

$$\rightarrow$$
 R(x, y), S(y, z), T(x, z)

delete u: delete u from all atoms containing u

$$= h_{2}^{*}$$

### Responsibility for Why-No causality

- What to add along with a tuple t to make a non-answer p an answer
- Much easier (PTIME)
- If query has m subgoals, the size of the contingency set is at most m-1
  - e.g. q:- R(x, y) T(y, z) has 2 subgoals
- Try all possible options
- If the active domain size is N, at most N<sup>m</sup> options
- PTIME data complexity (m = constant)

### Responsibility in practice



### **Context Aware Recommendations**



### Solution

- Extension to view-conditioned causality
  - Ability to condition on multiple correct or incorrect outputs
- Reduction of computing responsibility to a Max SAT problem
  - Use state-of-the-art tools



### Summary

- Pearl's causality model in AI can be adopted in DB
  - Causal network = provenance/lineage
  - Tuples are potential causes
  - Both for answers and non-answers
- However,
  - This does not reveal causal inferences in practice
  - e.g. whether smoking causes cancer
- We need to infer causal relationships among variables in the presence of other variables
  - confounding covariates
- Causality in Statistics and Rubin's potential outcome model
  - next lecture