CompSci 590.6 Understanding Data: Theory and Applications

Lecture 18
Database Usability

Instructor: Sudeepa Roy

Email: sudeepa@cs.duke.edu

Fall 2015

What did we learn so far? What will we learn?

DB Systems

DB Systems + Theory

DB Theory

Data Cube
Association rule mining

Provenance, Why-not, Deletion propagation

Probabilistic, Incomplete, Inconsistent DB

Causality in DB, Stat, AI

Database Usability Crowdsourcing

Systems for analytics ML, Visualization, Large-scale

Today's Reading

Main reading:

Jagadish-Chapman-Elkiss-Jayapandian-Li-Nandi-Yu

SIGMOD 2007

Making Database Systems Usable

(Student Presentation)

Additional reading:

Li-Chan-Maier

VLDB 2015

Query From Examples: An Iterative, Data-Driven Approach to Query Construction

(An overview in these slides)

Query By Examples (QFE)

- Help database users unfamiliar with SQL construct SQL queries
- User gets (D, R) pair as input
 - D = input database, R = desired result set
- Many such candidate Qs
 - Asks the user to distinguish them again with examples
 - Only requires that the user is able to determine whether a candidate is the result of her intended query on some database D'
- Objective: minimize the effort needed by the user

Example

Example 1.1. To illustrate our QFE approach, suppose that a user needs help to determine her target query Q for the following database-result pair (D,R), where D consists of a single table.

Employee

		p g .		
Eid	name	gender	dept	salary
1	Alice	F	Sales	3700
2	Bob	M	IT	4200
3	Celina	F	Service	3000
4	Darren	M	IT	5000
		D . I	-	

name
Bob
Darren
Result R

Database D

For simplicity, assume that there is a set of three candidate queries, $QC = \{Q_1, Q_2, Q_3\}$, for Q, where each $Q_i =$ $\pi_{name}(\sigma_{p_i}(Employee)), \text{ with } p_1 = \text{`gender} = \text{`M''}, p_2 =$ 'salary > 4000', and $p_3 =$ 'dept = "IT"'. To help identify the user's target query among these three candidates, our approach will first present to the user a modified database¹ $\hat{D_1}$ and two possible query results, R_1 and R_2 , on D_1 :

	Employe	ee	
name	gender	dept	salary
Alice	F	Sales	3700
Bob	M	IT	3900
Celina	F	Service	3000
Darren	M	IT	5000
	Alice Bob Celina	$\begin{array}{c c} \text{name} & \text{gender} \\ \hline Alice & F \\ Bob & M \\ Celina & F \\ \end{array}$	$ \begin{array}{c cccc} Alice & F & Sales \\ Bob & M & IT \\ Celina & F & Service \\ Darren & M & IT \\ \end{array} $

name
Bob
Darren
Result R_1

 $Database D_1$

name Darren $\overline{Result \ R_2}$

The modified database D_1 serves to partition QC into multiple subsets. In this example, QC is partitioned into two subsets with the queries in $\{Q_1, Q_3\}$ producing the same result R_1 on D_1 and the query in $\{Q_2\}$ producing the result R_2 . The user is then prompted to provide feedback on which of R_1 and R_2 is the result of her target query Q on D_1 . If the user chooses R_2 , then we conclude that the target query is Q_2 . Otherwise, $Q \in \{Q_1, Q_3\}$ and the feedback process will iterate another round and present the user with another modified database D_2 and two possible results, R_3 and R_4 on D_2 :

		Employ	iee	
Eid	name	gender	dept	salary
1	Alice	F	Sales	3700
2	Bob	M	Service	4200
3	Celina	F	Service	3000
4	Darren	M	IT	5000
		Database	D_2	

name	
Bob	
Darren	
$\overline{Result R_3}$	
name	
name Darren	

If the user feed back that R_3 is the result of Q on D_2 , then

QFE: Challenges

- 1. How to generate candidate target queries given an initial database-result pair
 - Not the focus of this paper
 - Tran-Chan-Parthasarathy: "Query by Output" (SIGMOD 2009)
 - Zhang-Elmeleegy-Procopiuc-Srivastava: "Reverse engineering complex join queries" (SIGMOD 2013)
- 2. How to optimize the user-feedback interactions to minimize the user's effort to identify the desired query
 - This paper
 - Select-Project-Join queries

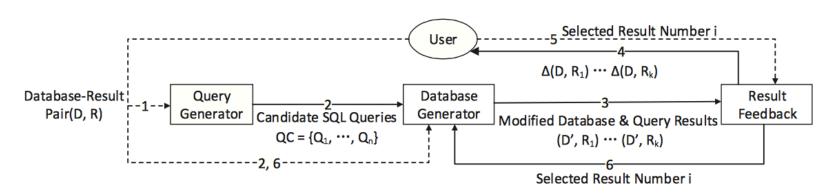
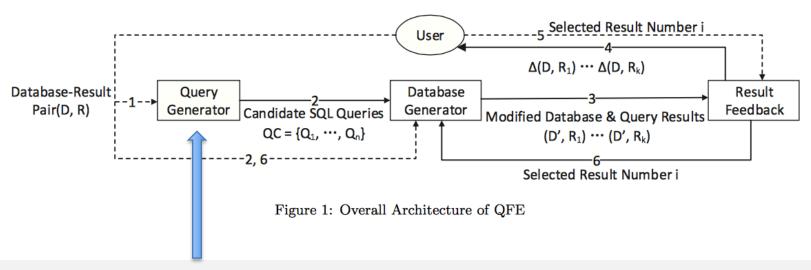


Figure 1: Overall Architecture of QFE

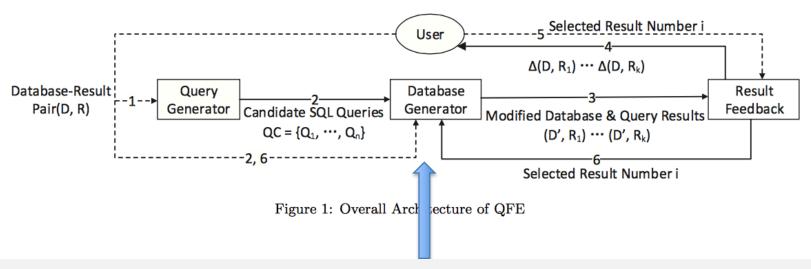


The Query Generator module

- takes (D,R) as input
- generates a set of candidate SQL queries QC = {Q₁, ··· ,Q_n} for (D,R)
 - i.e., $Q_i(D) = R$ for each $Q_i \subseteq QC$

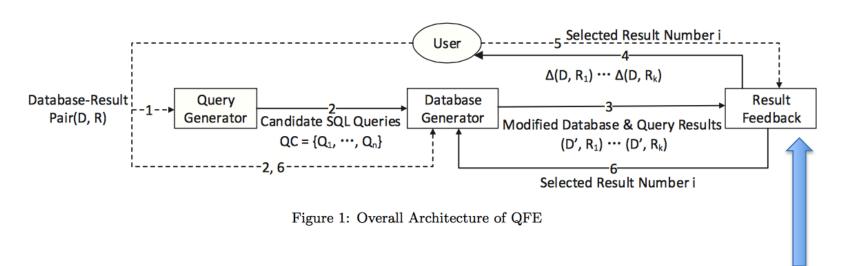
Overview: Query Generator

- Tree-based classifier
 - Positive tuples: contribute to query result
 - Negative tuples: do not contribute
- A binary decision tree is constructed topdown
 - If a leaf-node is not good, split it
 - goodness condition: entropy, classification error,
 Gini index
 - split with some condition: e.g. t.A <= v</p>



The Database Generator module

- takes (D,R) and QC' ⊆ QC as input
- generates a new database D'
- D' partitions QC' based on their results into k smaller subsets
 - query in the same partition produces the same result



The Result Feedback module

- takes the new database D' and the k results (from k partitions)
- User identifies one partition x as correct
- Repeat with this partition until the chosen partition has only one query
- To help reduce user's effort, only the difference of D' with the original database D is presented.

Cost Model

- Used by the "Database Generator" module to select a "good" modified database D' to partition the query candidates QC into QC₁, ..., QC_k
- To minimize the #iterations, each partition should ideally be balanced
 - Remember O(n log n)-time divide and conquer algorithms
- To reduce user's effort
 - D' should be close to D
 - New results $R_1,...,R_k$ should be close to original result R

Balance Score

Candidate query groups C = {QC₁, ..., QC_k}

- The balance score of D' is σ/k
 - $-\sigma$ = standard deviation of $|QC_1|$, ..., $|QC_k|$

- Smaller balance score
 - = many subsets of about the same size

Estimating User's Effort

- Minimize distances between (databases D and D') or (results $R_1,...R_k$ and R)
- Cost components for identifying differences:

1. Current cost

- A. Databases D and D'
 Edit Distance between D and D' minEdit(D, D')
 - + Cost proportional to #modified relations
- B. Results R_i and R for i = 1..kSum of edit distances between R_i and R

Residual cost

- A. An estimate of the cost for future rounds
- B. Depends on user's feedback
- C. Conservative estimate of #iterations x current cost in each iteration
 Two partitions
 Largest group is chosen

Tuple Class: Partitioning Attribute Domain

- Need to find equivalent query classes
- Given a set of queries QC
 - Partition the domain of an attribute A into minimum collection of disjoint subsets P_{OC}(A)
 - such that for every subset I and for each selection predicate p on A in QC
 - either every value in I satisfies p or no value in I satisfies p

```
EXAMPLE 5.1. Consider a relation T(A, B, C) where both A and B have numeric domains; and a set of queries QC = \{Q_1, Q_2\}, where Q_1 = \sigma_{(A \le 50) \land (B > 60)}(T) and Q_2 = \sigma_{(A \in (40,80]) \land (B \le 20)}(T). We have \mathcal{P}_{QC}(A) = \{[-\infty, 40], (40,50], (50,80], (80,\infty]\} \mathcal{P}_{QC}(B) = \{[-\infty, 20], (20,60], (60,\infty]\}, and \mathcal{P}_{QC}(C) = \{[-\infty,\infty]\}.
```

Tuple Class: Definition

Given a relation $T(A_1, \dots, A_n)$ and a set of queries QC, a tuple class for T relative to QC is defined as a tuple of subsets (I_1, \dots, I_n) where each $I_j \in \mathcal{P}_{QC}(A_j)$. We say that a tuple $t \in T$ belongs to a tuple class $TC = (I_1, \dots, I_n)$, denoted by $t \in TC$, if $t.A_j \in I_j$ for each $j \in [1, n]$.

```
Example 5.3. Continuing with Example 5.1, TC = ((40, 50], [-\infty, 20], [-\infty, \infty]) is an example of a tuple class for T, and (48, 3, 25) \in TC.
```

- A single tuple modification can be represented by a pair (s, d) of tuple classes where a tuple t in s is modified to a tuple t' in d
 - s and d should not be equal
- Possible modifications by a set of (STC, DTC) pairs
 - STC = Source Tuple Class
 - DTC = Destination Tuple Class

Tuple class: observation

- Given D, a set of queries QC
- If D' is generated by modifying n distinct tuples
- D' can partition QC into at most 4ⁿ equivalent query subsets
- Intuition: for every tuple being changed from t to t' and for each query Q in QC
 - both t, t' match Q
 - neither match Q
 - t matches Q, t' does not
 - t' matches Q, t does not
- Extend the notions of cost/balance/minedit to (STC, DTC) pairs

Heuristic

- Search in a smaller domain of "tuple-class pairs"
- Input: a set of candidate queries QC
- Output: A modified database D' with a small value of cost(D')
- Step 1: Generate a skyline (?) SP of (STC, DTC)
 pairs (s, d) w.r.t. balance(..) and minEdit(..)
- Step 2: Select A "good" subset S_{OPT} ⊆ SP
- Generate D' from D and S_{OPT}

Summary

- Database usability is as important as capability
 - help user formulate query with examples
 - minimize user interaction and time

- Next two lectures: crowd sourcing
 - "wisdom of crowd" is used to implement database operators