CompSci 590.6

Understanding Data:
Theory and Applications

Lecture 2
Data Cube Basics

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu

Today’s Papers

1.
Gray-Chaudhuri-Bosworth-Layman-Reichart-Venkatrao-Pellow-Pirahesh

Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals

ICDE 1996/Data Mining and Knowledge Discovery 1997
— Thinking process at that time

2.
Agarwal-Agrawal-Deshpande-Gupta-Naughton-Ramakrishnan-Sarawagi
On the Computation of Multidimensional Aggregates

VLDB 1996

— Technical

(more than 2630 and 750 citations resp. on Google Scholar)

AN A S

Sales (Model, Year, Color, Units)

Naive Approach

Data analysts are interested in exploring trends and
anomalies

Possibly by visualization (Excel) - 2D or 3D plots

“Dimensionality Reduction” by summarizing data and
computing aggregates

Find total unit sales for each
Model
Model, broken into years
Year, broken into colors
Year
Model, broken into colors

Total Unit sales

Model

o

olor

Year

Sales (Model, Year, Color, Units)

Naive Approach

Run a number of queries)
9 Total Unit sales

SELECT sum (units)
FROM Sales

SELECT Color, sum(units) ’
FROM Sales —

GROUP BY Color

SELECT Year, sum(units)
FROM Sales
GROUP BY Year

SELECT Model, Year, sum(units)
FROM Sales C

Model

GROUP BY Model, Year > olor
Year
e Data cube generalizes Histogram, Roll-Ups, « How many sub-queries?
Cross-Tabs o
e More complex to do these with GROUP-BY * How many sub-queries for

8 attributes?

Sales (Model, Year, Color, Units)

Histograms

A tabulated frequency of computed values

SELECT Year, COUNT (Units) as total
FROM Sales

GROUP BY Year
ORDER BY Year

total ->

Year ->

May require a nested SELECT to compute

Sales (Model, Year, Color, Units)

Roll-Ups

Analysis reports start at a coarse level,

) Roll-ups
go to finer levels >
Order of attribute matters < _
. Drill-downs
Not relational data (empty cells no
GROUP BY
keys) T
Model Year Color Model, Year, Color Model, Year Model
Chevy 1994 Black 50
Chevy 1994 White 40
90
Chevy 1995 Black 115
Chevy 1995 White 85
200

290

Sales (Model, Year, Color, Units)
Roll-Ups
* Another representation (Chris Date’96)
 Relational, but

- long attribute names
— hard to express in SQL and repetition

GROUP BY
T

Model Year Color Model, Year, Color I\/\I(c;c:;l, Model

Chevy 1994 Black 50 90 290

Chevy 1994 White 40 90 290

Chevy 1995 Black 85 200 290

Chevy 1995 Black 115 200 290

Sales (Model, Year, Color, Units)

‘ALL’ Construct

Easier to visualize roll-up if allow ALL to fill in the super-aggregates

SELECT Model, Year, Color, SUM(Units)

FROM Sales Model Year Color Units
WHERE Model = ‘Chevy’
GROUP BY Model, Year, Color Chevy 1994 Black 50
UNION
SELECT Model, Year, ‘ALL’, SUM(Units) Chevy 1994 White 40
FROM Sales
WHERE Model = ‘Chevy’ Chevy 1994 ‘AL 90
GROUP BY Model, Year
UNION Chevy 1995 Black 85
UNION Chevy 1995 White 115
SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Units)
FROM Sales Chevy 1995 ‘ALL 200

WHERE Model = ‘Chevy’;
Chevy ‘ALL ‘ALL’ 290

Sales (Model, Year, Color, Units)

Traditional Roll-Up ‘ALL’ Roll-Up
Model Year Color Model, Year, Color Model, Year Model Model Year Color Units
Chevy 1994 Black 50 Chevy 1994 Black >0
Chewy 1994 White 40
Chevy 1994 White 40
Chevy 1994 ‘ALL’ 90
90
Chevy 1995 Black 85
Chevy 1995 Black 115
Chevy 1995 White 115
Chevy 1995 White 85
Chevy 1995 ‘ALL’ 200
200
Chevy ‘ALl ‘ALl 290
290

* Roll-ups are asymmetric

Sales (Model, Year, Color, Units)

Cross Tabulation

If we made the roll-up symmetric, we would get a cross-tabulation
Generalizes to higher dimensions

SELECT Model, ‘ALL’, Color, SUM(Units) Chevy 1994 1995 Total (ALL)
FROM Sales
WHERE Model = ‘Chevy’ Black 50 85 135
GROUP BY Model, Color
White 40 115 155
Total (ALL) 90 200 290

Is the problem solved with Cross-Tab and GROUP-BYs with ‘ALL"?
 Requires a lot of GROUP BYs (64 for 6-dimension)
 Too complex to optimize (64 scans, 64 sort/hash, slow)

Sales (Model, Year, Color, Units)

Data Cube: Intuition

SELECT ‘ALL’, ‘ALL’,

FROM Sales
UNION

SELECT ‘ALL’, ‘ALL’,

FROM Sales

GROUP BY Color
UNION

SELECT ‘ALL’, Year,
FROM Sales

GROUP BY Year
UNION

SELECT Model, Year,
FROM Sales

GROUP BY Model, Year

UNION

‘ALL’,

Color,

‘ALL',

‘ALL’,

sum(units)

sum (units)

sum (units)

sum(units)

Total Unit sales

'f

Model

o

olor

>
Year

11

Data Cube

dey
p=>

o

Regional Mgr. View

Product Mgr. View

Avidvg

°
£
a

1)

Financial Mgr. View Ad Hoc View

Ack: from slides by Laurel Orr and Jeremy Hyrkas, UW

Data Cube

Computes the aggregate on all possible combinations of
group by columns.

If there are N attributes, there are 2N-1 super-aggregates.

If the cardinality of the N attributes are C,,..., C, then there
are a total of (C,+1)...(C\+1) values in the cube.

ROLL-UP is similar but just looks at N aggregates

Sales (Model, Year, Color, Units)

Data Cube Syntax

e SQL Server

SELECT Model, Year, Color, sum(units)
FROM Sales

GROUP BY Model, Year, Color

WITH CUBE

Types of Aggregates

Distributive: input can be partitioned into disjoint sets
and aggregated separately
o COUNT, SUM, MIN

Algebraic: can be composed of distributive aggregates
o AVG

Holistic: aggregate must be computed over the entire
input set
o MEDIAN

Types of Aggregates

Efficient computation of the CUBE operator depends on the
type of aggregate

Distributive and Algebraic aggregates motivate
optimizations

Agarwal et al paper

Compute GROUP-BYs from previously computed GROUP-
BYs

Which direction?

Next, some generic optimizations

Optimization 1: Smallest Parent

Compute GROUP-BY from
the smallest (size)
previously computed
GROUP-BY as a parent

— AB can be computed from
ABC, ABD, or ABCD

— ABC or ABD better than ABCD

— Even ABC or ABD may have
different sizes

all
”a”7ﬂ R\‘-~~~~
"‘f 'l \\ s~~~
- 4 > >
A B C D
;1‘\\ a”7‘l~\‘~ f”im~s f"mk
// ”*\f ~:*'~"’ :v' o 7 o \\
L - - ~ - > "\J ~a
P .- S
AB AC AD BG BD CD
.. M Tz R A
\\ N - | TS -~ f” \\ ff’ //
-
\\\ | :, 1~ i :a ’5:§ "¢¢'\\\‘,,/
R ~ - LS
ABC ABD ACD BCD
‘ ~~~~~~~~ t - N /’_,—7— ———————)
~~v—

18

Optimization 2: Cache Results

Cache result of one GROUP-
BY in memory to reduce
disk 1/0

— Compute AB from ABC while
ABC is still in memory

all
’’’’’ 7 A R\‘-‘~~~~
“a ’l \\ ~~~
2% V4 S ~N§
A B C D
s, - 7‘,132-:/ N N‘XJ/?R
¢ \ _2< P - <—’ Sag N
¢ T N *'* S il T
’,f” \\’ fffffffff \d ~~~J ~~\
AB AC AD C BD CD
- > 4
‘:‘~~ i T ":’ ¢~’ ’\’ k; —”’la
S ks, - s 3" St
\\\L,a’ ~~~L,—:‘~“:§v,¢’ ~ ‘*,/
ABC ABD ACD BCD
<€ 7 =
~~~~~~~~ t \::v’—,—,———’———‘

19



Optimization 3: Amortize Disk Scans

all
Amortize disk reads for .7 7A R
e ~AALD b et 4 \\\ ~~~~~
multiple GROUP-Bys N é . .
— Suppose the result for ABCD /;1;\-:><:,,¢7§32: =::?j::’ ~~~~~~ ‘ 7,\
is stored on disk A Y s VAR
— Compute all of ABC, ABD, AB AC AD BC BD CD
H H ‘~“~ "ﬁ ~~~~~ *’\’ \f - A; 4”a
ACD, BCD simultaneously in R S :;,:f‘—//
one scan of ABCD ottt <
ABC ABD ACD BCD
Rl T V\\ ¢’7 ————— >
-~-~~~\v’—————
ABCD

20



Optimization 4, 5 (later)

4. Share-sort
— for sort-based algorithms

5. Shared-partition
— for hash-based algorithms

all
471 R"s
- N\ -
af”" /, \\\ ~~~~Ns
A B C
;1‘\\ . f?‘l~ -~ :—’m~~ ,a”'{
\*’><~\ - \\“~* s‘ \\
U4 d’\ —~’ f\ ~~~~ ‘\\
o~ =" >~ " <f “J ~y
AB  AC AD BG BD CD
-

Coo B TR A
N B I - als s \ 7
SL-" s lL=" ol FOT L Vi
ABC ABD ACD BCD

Rl ER hiy LS ;”7— ——————— y
~~~v———

21

PipeSort Algorithm

PipeSort: Basic Idea

Share-sort optimization: A
— Data sorted in one order
— Compute all GROUP-BYs prefixed in that order AB
— Example:

* GROUP-BY over attributes ABCD ABC

Sort raw data by ABCD

Compute ABCD -> ABC -> AB -> A in pipelined fashion ABCD

No additional sort needed

BUT, may have a conflict with “smallest-parent” optimization

ABD -> AB could be a better choice

Pipe-sort algorithm:

Combines two optimizations: “shared-sorts” and “smallest-parent”

Also includes “cache-results” and “amortized-scans”

Compute one tuple of ABCD, propagate upward in the pipeline
by a single scan

Harinarayan et al. 96

Search Lattice ‘v’

Directed edge => one attribute . all . Level 0
H . ,” 1 Y‘ ~s~
less and possible computation A N

- Vi N >y

- V4 > S
Level k contains k attributes A B C D Level 1
- all = 0 attribute /;,'\-\“><””7‘:\~~ ’::T:: :::?R\
vy \: \”’ \\— > <~‘~ y ~“~\\\
Two possible costs for each P Ve D e A
R PN AB AC AD C BD CD Level 2
edge €; =i-->] Woo e @*:"’g‘i\—\";"(o
L . S SRl PPt ;e Ny =7 \\‘,a -
A(e;): iis sorted for] . i‘/,s..-\i/;«:‘%v,/— ‘:‘V'
S(e;): iis NOT sorted for j ABC ABD ACD BCD Level 3
R ‘-\\ /’7 ————— >
s lee
Sorted Not Sorted ABCD Level 4
sum sum
al (bl |cl |5 a2 | b2 |c3 |11
al (bl |c2 |10 al |bl |c2 |10 sum
al |b2 |c3 |8 a2 |b2 |c1 |2 :> al |bl |15
a2 (b2 |cl |2 al |[bl |cl1 |5 al | b2 |8
a2 (b2 |c3 |11 al |b2 |c3 |8 a2 | b2 |13

Sorted (A) ====>

p subgranh O PipeSort Output wecsored(s)---»>

each node has a single parent

all Level O
each node has a sorted order of _e"T A RS
attributes " A N T
-) : : A B C D Level 1
if parent’s sorted order is a prefix, - ,—"7“\-—”W><'%
cost = A(e;), else S(e;) P P ST AL DT AN
£ =" - T ,f“’ S, NN\\
Mark by Aor S "\ o g o
AB AC AD .§C BD CD Level 2
At most one A-marked out-edge D . R I |
N > & - - - ,—” N, o -

Goal: Find O with min total cost ‘\‘C";aff\f,:— 2 /"\‘,\/l
Q. Should we always have a green ACB ABD ACD BDC Level 3
out-edge? <"“~~§_~“¢_’:’——"?

Sorted Not Sorted ACBD Level 4

sum sum

al |bl (cl1 |5 a2 | b2 |c3 |11
al |bl |[c2 |10 al |bl |[c2 |10 sum
al |b2 |c3 |8 a2 |b2 |c1 |2 :> al |bl |15
a2 | b2 (cl1 |2 al |[bl |cl1 |5 al |b2 |8
a2 | b2 |c3 |11 al | b2 |[c3 |8 a2 | b2 |13

Outline: PipeSort Algorithm (1)

e Go fromlevel 0 to N-1 all Level O
- here N = 4 ",¢’¢”;ﬂ R\f\\\\\~~
Pt 4 \\ ~~N~
* For each level k A B C D Level 1
. . ;1‘ a”7‘h\‘~‘—”im“s ,*’%
— find the best way to construct it) b I T P \7{\\\
from level k+1 e e R e 12
AB AC AD ’§,C BD CD Leve
*~~~ >~ @a’\” “:\,,?k; "’a
. . . N L S i\
* Weighted Bipartite Matching iR Sowe v
ABC ABD ACD BCD Level 3
- G(V1,V2,E) L V. A e >
— Weight on edges T RagemT
g & ABCD Level 4 ¥

— each vertexin V1 should be
connected to at most one vertex in V2

— Find a matching of max total
weight

— Here min total weight
— W ->max_weight—-w
— Requires |V2| >= | V1]

Outline: PipeSort Algorithm (2)

Reduction to a weighted all Level 0
: : : TA RS
bipartite matching between P N S
Pt s S . 1O
level k and k+1 A B C D Level 1
i P /,,7‘,. uz” m\ ,,—m.\
Make k new copies of each s S N P N
node in level k+1 AB' AC BC BD OD Lcvel 2
— k+1 copies for each in total bSO " ,_,uﬁ*i:: TR A
— replicate edges R R Y
. ABC ABD ACD BCD evel 3
Original copy = cost A(e;) = TR
et
sorted ABCD H Level 4 ¥
— sorted order of i fixed
. _ Make new 2 copies
New copies = cost S(eij) - Total 3 copies each
not sorted

— needtosorti

Outline: PipeSort Algorithm (3)

* lllustration with a smaller example =y Level 0
- 1 ~\~~
e Level k=1 fromlevel k+1 =2 o ". Y
_ A B C Levell
one new copy (dotted edges) o w P
— one existing copy (solid edge) | T2etl el
L=~ N\\VI’ N\NJ
* Assumption for simplicity AB AC BC el
— same cost for all outgoing edges 2, 1o\=\\ > 12’-; 13, 2@
N i Ky
- A(eij) = A(eij,) \\\ \ S
A B Level 3
— S(ey) = S(ey Mol
~N7
ABC
Sres ot \//J/& + Optimal on total cost
AB AB AC AC BC BC AB AB AC AC BC BC ptimal on total Cos
2 10§ 12 13 20 10 5 12 13 20

* Not on #sorts

(a) Transformed search lattice - can be suboptimal (size)

(b) Minimum cost matching

Outline: PipeSort Algorithm (4)

After computing the plan, execute all pipelines

1. First pipeline is executed by one scan of the data

) .

‘f > pipeline cdges 2. Sort CBAD -> BADC,

c) ,] TTT ertedge all compute the second pipeline
24 68 418 413 T 3

(R S c s o
CB BA AC DB AD CD ¢ 1\ ? ¢
618 5156 414 5156 516 1020

1 ? _,t,-""", SEOPPPES c B A Av o op

s BEEESS

CBA BAD ACD DBC e U
0% 1840 1 451w cBA BaD ac0 pec (ep) (acp) Gasp
? 7. .27 -==""7A, S costs A A A

e cpo
"

(a) The minimum cost sort plan (b) The pipelines that are executed

Outline: PipeSort Algorithm (5)

Observations:

* Finds the best plan for computing level k
from level k+1

— Assuming the cost of sorting “BAD” does not
depend on how the GROUP-BY on “BAD” has been

computed BC
* Generating plan k+1 -> k does not prevent “
generating plan k+2 -> k+1 from finding the
best choice ABC ';‘M
* Not provably globally optimal :

— e.g.can the optimal plan compute AB from
ABCD?

— something to explore!

i
ABC
If the green edge is chosen,

the sorted order of ABCD
will be BCAD

PipeHash Algorithm

PipeHash: Basic Idea (1) -

|l
e Use hash tables to compute smaller /,;,; R
GROUP-BYs
. it A B C D
If the hash tables for AB and AC fit in PN T, S N
memory, compute both in one scan of ABC < 3 2ol __o#817en (o oaT il f N
'/" \,,——‘ Noae oo™y T TN,
. i icti AB AC AD G BD CD
With no memory restrictions N _BC =
R S S T
for k=N...0: R R To e Vi
For each k+1-attribute GROUP BY g ABC ~ ABD ACD BCD
Compute in one scan of g all k-attribute GROUP TR e
BY where g is smallest parent ABCD
Save g to disk and destroy the hash table of g sum |
- sum al |bl |(cl1 |5
- sum al |cl |- |5 al |bl |c2 |10
%
al | bl |7 |15 al |2 |10 <—\ a2 [b2 |c3 |8
al | b2 [-» (8 a2 |3 |- |19 a2 b2 |c1 |2
a2 |b2 |=»|13 a2 |cl |-»|2 a2 b2 |c3 |11 | ¥

PipeHash: Basic Idea (2) -

e But, data might be large, Hash Tables all

el > 4 \"s
may not fit in memory _ae” /1 " . e
" y AN T
e Solution: optimization “shared-partition” A B C D
— partition data on one or more ,,?7"\'~></’7f: 3esl T\ —‘:?“ X
attributes PR W e S A S
— i iti AB AC AD G BD CD
| Suppose the data is partitioned on B e o §, ’7» e
attribute A N ;"‘7'~~:‘><" S W
so b ol 1 ZoaTo. e\ 7
— All GROUP-Bys containing A (AB, AC, e~ ~b ;ED v
AD, ABC...) can be computed AB‘C__ AB‘_D S _f’)CD
independently on each partition B LR NPt
— Cost of partitioning is shared by ABCD
multiple GROUP-BYs |
sum |
- sum al |bl |cl1 |5
- sum al [cl |=>|5 al |bl |c2 |10
%
al bl 17115 al |2 |- |10 <—\ a2 |b2 |3 |8
NN ~> | 8 a2 |c3 [—»|19 a2 b2 |c1 |2
ERn => | 13 a2 [cl |-»|2 a2 |b2 |3 |11 | ¥

PipeHash: Basic Idea (3) -

* Input: search lattice all
_ —”7;‘ R\v~~~
* For each group-by, select smallest parent ~ _.--=" N TN
e Result: Minimum Spanning Tree (MST) A B C D
;1‘\\ ’a”?". e f’ m~~ a”m
P i NPt o \s~: <:~ “' \\
Ly l“ l ’/:, - \\” - N\\\‘“,— \j ~~~JI ~~~*
| AB AC AD _BC E},D CD
. ” | *~~ = ~— &_‘4’ ') k‘ fa
A C D Ny ~"'~ ¢’~4“ N\k”’ Sy g" ’
=l b ~ > 4
2 4 L 5 | R I . 3\/
| R | ABC ABD ACD BCD
| C C AD D | - N mnnn" »
A ‘ | Bl PSPt
w-P Azo . ’Bw 7 20 ,z;n,. %5% -
(P N AP L A ABCD
j % - Size of GROUP-BY
ABC ABD AGD BCD
o c.. N80 70 -7

/
L

ABCD
o

Raw Daws

(a) Minimum spauning tree

But, all Hash Tables (HT) in the MST may not
fit in the memory together

To consider:
— Which GROUP-BYs to compute together?
— When to allocate-release memory for HT?

— What attributes to partition on?

Outline: PipeHash Algorithm (1)

 Once again, a combinatorial optimization problem

e This problem is conjectured to be NP-complete in the paper
— something to explore!

e Use heuristics

Trade-offs
1. Choose as large sub-tree of MST as possible (“cache-results”, “amortized
scan”

2. The sub-tree must include the partitioning attribute(s)

Heuristic

Choose a partitioning attribute that allows selection of the largest subtree of MST

Outline: PipeHash Algorithm (2)

Algorithm

* Input: search lattice

e worklist = {MST}

* while worklist not empty
* select one tree T from the worklist
T =select-subtree(T)
 Compute-subtree(T’)

Next, through examples
e Select-subtree(T)

— May add more subtrees to worklist

 Compute-subtree(T’)

all
- V4 \\ Ss
a”‘ < S Ss,
- V4 S S
A B C D
S N
/, - ><~\v¢”‘ \\~: :: ~~‘~~ \\
POC APt L R PPt o T
C BD CD
AB AC AD BC BD
*:~~] . T @“‘i - . \ ,ffa
Y TP BT Y2t ¢ ‘
\\\La” ~‘~.",f” “:g - \\‘*/,
ABC ABD ACD BCD
‘ ~~~~~~~~ A . /,7— ———————)
"‘:v’—"
ABCD
-"l" :
z"} .-)s E‘m_‘ns‘% |
.(. “.\5 |
IR

z 20

X . ”:".
ARC BD ACD D
,% '\90 ,S’so,x'&cw

S

ABCD
For

Raw Dan

(1) Minimum spauning tree

Outline: PipeHash Algorithm (3)

Compute-Subtree(T’)

T’ = Select-Subtree(T) =T

A Partition T,

For each partition,
Compute GROUP-BY ABCD

e s={A}is such that Scan ABCD to compute ABC, ABD, ACD
S e Save ABCD, ABD to disk
B} — T. per partition in P_fits in ’
Hash Table s PP 5 Compute AD from ACD
in memory memory Save ACD, AD to disk
until all P.= #partitions Compute AB, AC from ABC
children are _ T’ =T, is the largest Save ABC, AC to disk
created Aot bot to add Compute A from AB
L reates neW! sub-trees 1o a Save AB, A from disk
) ! A ! al)
A C Dv | [A
2 _-)s Qs A '
L BN ‘ ' . 5 A B c b
' D D A A
S S TR L RS, S ,, : ~ 7
Aai'u 8D AGD ’ : BD A b @] pc o BD
,0'-___‘\90 750 A4 ARG AR ¢ ' N
«4"‘._vv’ -’ ‘*,\\\»‘ ///) \(/
ABCD o E‘EJ BED
EPIOO APCD :
: 1.
Raw Dawa e ABCD

(a) Minimum spanning tree

I Raw Data | L

(b) First subtree: partitioned on A (c) Remaining subtrees

Experiments

NH:NaiveHash PH:PipeHash NS:NaiveSort PS:PipeSort

] Lower-bound [: Exva

NN 0

5 Experimental evaluation

In this section, we present the performance of our
cube algorithms on several real-life datasets and an-
alyze the behavior of these algorithms on tunable syn-
thetic datasets. These experiments were performed on
a RS/6000 250 workstatxonrunnmgAD(325 Tbe

T

(S phys ory o
Weusedabuﬂ'erofaize32hm Thedataaetswere
stored as ﬂat ﬁlﬂ on a local 2GB SCSI 3.5” drive with DatasetA DatestB DareebC DatasotD DatasorE
sequential throughput of about 1.5 MB/secon Figure 5: Performance of the cube computation algorithms
on the five real life datasets. The y-axis denotes the total

time normalized by the time taken by the NaiveHash algo-
rithm for each dataset.

 Here sort-based better than hash-based (new hash-table for each
GROUP-BY)

 Another experiment on synthetic data (see paper)
* For less sparse data, hash-based better than sort-based

Summary

Similar Overlap algorithm by Deshpande et al. (see
paper)

All algorithms try to pick the best plan to compute
aggregates with fewer scans and maximal memory
usage

Finding optimal decisions for each algorithm may be NP-
complete

Algorithms use heuristics that work well in practice

Next class: other efficient implementations and index
for cube

