CompSci 590.6 Understanding Data: Theory and Applications

Lecture 5

Index for ROLAP Cube and An Algorithm for MOLAP Cube

Instructor: Sudeepa Roy

Email: sudeepa@cs.duke.edu

Today's Paper(s)

Paper 1

Index Selection for OLAP

Gupta-Harinarayan-Rajaraman-Ullman

ICDE 1997

Paper 2

An Array-Based Algorithm for Simultaneous Multidimensional Aggregates

Zhao-Deshpande-Naughton

SIGMOD 1997

Paper#1

- Recall Lecture 3 (selective materialization)
- Materialized views for cubes
 - Greedy algorithm
 - By a subset of the authors
- This paper
 - Data cubes with indexes on the materialized views

Running Example

- From TPC-D (again)
- part (p), supplier (s), customer (c), sales
 - The business buys a part from a supplier and sells it to a customer
- p, s, c: Dimensions or attributes
- sub-cube on 1 or 2 out of 3 dimensions

Queries Considered

- Each dimension (p, s, c)
 - as a selection attribute (in WHERE, σ),
 - or as an output attribute (in GROUP-BY, Υ)

Example

- Find the "sales" to each customer of a given "part" =`widget' bought from a given "supplier" = 'widgets-r-us'
- Denoted by Q = $\Upsilon_c \sigma_{ps}$
- The order of dimensions in Υ_{r} σ is assumed to be non-important
- Any subcube that has all the output and selection attributes can answer such queries

Indexes

- B-tree indexes or variants
- For subcube ps, we can construct
 - $-I_{ps}$: search key is a concatenation of p and s
 - $-I_{sp}$: search key is a concatenation of s and p
- Order matters
 - Given a value of p, I_{ps} can efficiently retrieve those rows in subcube ps that have this value
 - Cannot do so "efficiently" given a value of s
- $I_{X1, X2, ..., Xk}$ can efficiently answer a query that has some prefix of $X_1, X_2, ..., X_k$ in its σ

Cost Model

- Cost of answering a query = #rows processed
- Consider $Q_1 = \Upsilon_p \sigma_s$
- How can we answer Q_1 ?
- using ps
 - = 0.8M
- using psc
 - = 6M
- using ps and index I_{sp}
 - The avg. no. of rows per s value = |ps|/|s| = 0.8/0.01= 80

What to materialize?

- Which subcube and indexes?
- Assume all queries are equiprobable
 - Queries associated with ps are
 - $\Upsilon_p \sigma_s$
 - $\Upsilon_{ps} \sigma_{\{\}}$
 - $\Upsilon_{\{\}} \sigma_{ps}$
 - $\Upsilon_s \sigma_p$
- Cannot materialize everything
- Suppose
 - all subcubes and indexes require
 80M rows
 - You can store only 25M rows

Simple Two-step Approach

- Divide available space for cubes and indexes
 - say equally
- Use greedy algo to select views (Lecture 3)
 - say psc, ps, sc, c, s, p, none
- Then select indexes
 - say I_{csp} , I_{pcs}
- 1.18M rows per query on average

1-Greedy Approach

- One step
- Greedily choose
 - subcube
 - or the index on a subcube (if the subcube is already chosen)
- $psc I_{csp} ps I_{pcs} I_{spc} c$ - s - p - none
- average query cost = 0.74M rows
 - 40% savings
 - ¾ to index ¼ to cube
 - hard to decide a priori
- But still can be improved

Slice Queries

- $\Upsilon_c \sigma_{p='widget'} R$
 - slice through the subcube pc
- $\Upsilon_{G1,...GK} \sigma_{S1,...,SI}$ associated with the subcube G1..GkS1...Sl
 - smallest cube that can answer this query
- An r-dimensional subcube has 2^r slice queries
 - each dimension can go to either Υ or σ
- every query is a slice query
- An n-dimensional cube has ⁿC_r r-dimensional subcubes
- Total slice queries for a data cube = 3ⁿ
 - summing over all r = 0 to n

How many indexes per cube?

- e.g. 4 with subcube ps
 - $-I_{p}(ps), I_{s}(ps), I_{ps}(ps), I_{sp}(ps)$
- order matters in an index
- #Index for a view with m attr
 - $= \sum_{r=0}^{m} {}^{m}C_{r} r! ---> (e-1)m!$
- Total #indexes for a n-dimensional cube
 - about 3n!
- Total #fat indexes (same attr in view and index)
 - about 2n!
 - where index attributes are permutations of cube attributes

Materializing Views with Indexes

Input

- a set of views
- each view has a set of indexes
- a set of queries to be supported
- cost c(Q, V, J) of answering query Q using view V and index J
 - estimated
- amount of space available S

Goal:

- select a set of views and indexes that will minimize the total cost to answer the queries not exceeding the space S
- NP-hard
 - Lecture 3
 - even if no index and unit cost

r-Greedy

- Use greedy algorithms
- r-Greedy
 - Generalization of 1-greedy
 - Instead of choosing at most one index/view with max benefit per unit space...
 - ...choose "at most r views" or index (for chosen views) every step with max benefit per unit space as a set
 - Runtime: O(km^r)
 - m: Number of structures (views/ index) in query graph
 - k: Number of structures selected
 - Max size (assuming unit size): S +r-1 units
 - Only practical for r ≤ 4

Paper#2

An Array-Based Algorithm for Simultaneous Multidimensional Aggregates
Zhao-Deshpande-Naughton
SIGMOD'97

Acknowledgement:

The following slides have been prepared using the slides by Manuel Calimlim, in CS632-Advanced Database Systems, Spring 2000, Cornell University

ROLAP vs MOLAP cube

- ROLAP = Relational OLAP
 - All algorithms so far were for ROLAP
 - A cell in the space is a tuple
 - e.g. (shoes, WestTown, 3-July-96, \$34)
- MOLAP = Multi-dimensional OLAP
 - Data in sparse arrays
 - just stores the data value \$34
 - The position in the array encodes (shoes, WestTown, 3-July-96)
- This paper: MOLAP algorithm for cube
- Similar example
 - Dimensions = product, store, time
 - Measure = sales

ROLAP Cube

- In ROLAP systems, 3 main ideas for efficiently computing the CUBE
- 1. Group related tuples together (using sorting or hashing)
- 2. Use grouping performed on sub-aggregates to speed computation
- 3. Compute an aggregate from another aggregate rather than the base table

MOLAP cube

- No "bring together related values"
 - Data values are stored in their own fixed location
 - Rather, visit those values in the right order so that the computation is efficient
- Simultaneously compute spatially-delimited partial aggregates
 - so that a cell is not visited for each sub-aggregate
- Store arrays efficiently on disk
 - "chunk" them into pieces
 - do compression to avoid wasting space on cells with no data

Multidimensional Array Storage

Data is stored in large, sparse arrays, which leads to certain problems:

- The array may be too big for memory
- Many of the cells may be empty and the array will be too sparse

Chunking Arrays

Sarawagi-Stonebraker, ICDE'94: Efficient Organization of Large Multidimensional Arrays

Why chunk?

- A simple row major or column major layout (partitioning by dimension) will favor certain dimensions over others
- e.g. assume (store, day) row major
 - to access a day may need multiple block read from disk

What is chunking?

 Divide an n-dimensional array into smaller n-dimensional chunks and store each chunk as one object on disk

Chunks

Dimension A

Dimension B

Array Compression

- No compression for dense arrays
 - more than 40% filled with data
 - fixed length chunks
 - assign a null value to invalid cells
 - Still compression since none of the dimension values are stored
- Compression for sparse array
 - less than 40% filled, most cells invalid
 - use "Chunk-offset compression"
 - for each valid entry, store (offsetInChunk, data) where offsetInChunk is the offset from the start of the chunk
 - e.g. for 3-D array, convert address (I, j, k) into an offset
 - chunks will be of variable length needs metadata for each chunk and data file

Naïve Array Cubing Algorithm

- Multiple passes
- compute each group-by in a separate pass with min memory
- No overlap of computation and minimizing I/O cost
- Similar to ROLAP, each aggregation is computed from its parent in the lattice.
- Each chunk is aggregated completely and then written to disk before moving on the next chunk.

Naïve Array Cubing Algorithm

Dimension A

- Compute AB
 - sweep through the Cplane if no chunks
- Suppose ABC is stored in a no. of chunks
 - they are numbered in dimension order (ABC)
 - need to sweep chunk by chunk
 - To compute group by for a_0b_0 , need to sum over 4 chunks for c_0 , c_1 , c_2 , c_3

Naïve Array Cubing Algorithm

- Multiple aggregates in cube
- Compute A from AB or AC, not from ABC
- Embed a "minimum spanning tree" to the lattice min size parent

Problems with Naïve approach

Dimension A

 Each sub aggregate is calculated independently

Dimension B

 E.g. this algorithm will compute AB from ABC, then rescan ABC to calculate AC, then rescan ABC to calculate BC

Dimension C

We need a method to simultaneously compute all children of a parent in a single pass over the parent

Single-Pass Multi-Way Array Cubing Algorithm

- The order of scanning is vitally important in determining how much memory is needed to compute the aggregates.
- A dimension order $O = (D_{j1}, D_{j2}, ... D_{jn})$ defines the order in which dimensions are scanned
 - Logical order, independent of physical layout on disk
- $|D_i|$ = size of dimension i
- |C_i| = size of the chunk for dimension i
- |C_i| << |D_i| in general

Order determines memory requirement

- $|C_i| = 4$, $|D_i| = 16$ for all i
- Dimension order (ABC)

Dimension B

- For BC, we need 4 chunks
 - 1-4 computes one chunk b_0c_0 of
 - give the memory to b₁c₀
- For AC, we need 16 chunks
 - allocate space to 4 chunks a_0c_0 , a_1c_0 , a_2c_0 , a_3c_0
 - after reading 16 chunks (a plane) give the memory to a_0c_1 , a_1c_1 , a_2C_1 , a_3C_1
- Dimension A
 - For AB, we need all 64 chunks
 - allocate memory to all 16 chunks of AB as we read chunks of the cube
 - after aggregation is complete, output those chunks in AB order

Concrete Example

- For BC group-bys, we need 1 chunk (4x4)
- For AC, we need 4 chunks (16x4)
- For AB, we need to keep track of whole slice of the AB plane, so (16x16)

Dimension A

Minimum Memory Spanning Trees (MMST)

MMST for a given dimension Level 3 order

p = size of the largest common
 prefix between the current
 group-by (size n-1) and its
 parent

Level 2

$$\Pi_{i=1 \text{ to p}} |Di| \times \Pi_{i=p+1 \text{ to n-1}} |Ci|$$

Level 1 $D_i = 16, C_i = 4$

Q. What is the optimal dimension order in general?

Effects of Dimension Order

Figure 3: MMST for Dimension Order ABCD (Total Memory Required 4 MB)

Figure 4: MMST for Dimension Order DBCA (Total Memory Required 4 GB)

$$|D_A| = 10, |D_B| = 100, |D_C| = 1000, |D_D| = 10000$$

 $|C_A| = |C_B| = |C_C| = |C_D| = 10$

Effects of Dimension Order

- The early elements in O (particularly the first one) appear in the most prefixes
 - contribute their dimension sizes to the memory requirements

- The last element in O can never appear in any prefix
 - The total memory requirement for computing the CUBE is independent of the size of the last dimension

Optimal Dimension Order

- Sort them on increasing dimension size
 - order is (D_{i1}, D_{i2}, ..., D_{in})
 - where $|D_{i1}| \le |D_{i2}| \le |D_{i3}| \le \le |D_{in}|$
- The total memory requirement will be minimized
 - a formal proof in the paper
- The total memory requirement is Independent of the size of the largest dimension
 - huge benefit if the largest dimension is big
- Extension to multiple passes
 - limited memory, suppose required memory is not
 - Right to left scan first compute BC so that it is not divided into multiple passes

Results

Figure 5: Naive vs. Multi-way Array Alg.

ROLAP vs. MOLAP

ROLAP vs. MOLAP

Figure 8: ROLAP vs. Multi-way Array for Data Set 2

Figure 9: ROLAP vs. Multi-way Array for Data Set 3

- Memory constant, ROLAP does multiple passes
- Array dimension size not changing with density
- Largest dimension has no effect

MOLAP for ROLAP system

We can use the MOLAP algorithm with ROLAP systems:

- 1. Scan the table and load into an array.
- 2. Compute the CUBE on the array.
- 3. Convert results into tables

- Even with the additional cost of conversion between data structures, the MOLAP algorithm
 - runs faster than directly computing the CUBE on the ROLAP tables
 - scales much better
- the multidimensional-array can be used as a query evaluation data structure rather than a persistent storage structure.

Summary

- The multidimensional array of MOLAP should be chunked and compressed
- The Single-Pass Multi-Way Array method simultaneously updates all GROUP-Bys in the CUBE with a single pass over the data
 - assumes required memory is available
 - Multiple passes are needed otherwise
- By minimizing the overlap in prefixes and sorting dimensions in order of increasing size, we can build a MMST that gives a plan for computing the CUBE
- On MOLAP systems, the CUBE is calculated much faster than on ROLAP systems
 - can be used even for cube for ROLAP