CompSci 590.6

Understanding Data:
Theory and Applications

Lecture 5

Index for ROLAP Cube
and
An Algorithm for MOLAP Cube

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu

Today’s Paper(s)

Paper 1

Index Selection for OLAP
Gupta-Harinarayan-Rajaraman-Ullman
ICDE 1997

Paper 2

An Array-Based Algorithm for Simultaneous Multidimensional
Aggregates

Zhao-Deshpande-Naughton

SIGMOD 1997

Paper#l

e Recall Lecture 3 (selective materialization)

* Materialized views for cubes
— Greedy algorithm
— By a subset of the authors

e This paper

— Data cubes with indexes on the materialized views

Running Example

From TPC-D (again)

part (p), supplier (s),
customer (c), sales

— The business buys a
part from a supplier
and sellsitto a
customer

p, S, c: Dimensions or
attributes

sub-cube on 1 or 2 out
of 3 dimensions

-~
o,

-
”

f’
‘f
’f
-

Queries Considered

 Each dimension (p, s, c)
— as a selection attribute (in WHERE, o),
— or as an output attribute (in GROUP-BY, Y)

 Example
— Find the “sales” to each customer of a given “part” =
‘widget’ bought from a given “supplier” = ‘widgets-r-us’
— Denoted by Q =Y, 0,

— The order of dimensions in Y, o is assumed to be non-
iImportant

— Any subcube that has all the output and selection
attributes can answer such queries

Indexes

e B-tree indexes or variants

* For subcube ps, we can construct
— |- search key is a concatenation of p and s
— I, search key is a concatenation of s and p

e Order matters

— Given a value of p, | ; can efficiently retrieve those
rows in subcube ps that have this value

— Cannot do so “efficiently” given a value of s

ly1 xo . xk €an efficiently answer a query that has
some prefix of X, X,, ..., X inits o

Cost Model

Cost of answering a query =
H#rows processed

) SC
Consider Q; =Y, O ———‘E)T ______ 6 M
How can we answerQ, ? -7 \ -
using ps PCEM ps o8m
1 ~-~-‘;’f_’_’: e
—_ = 08|V| I'L ,,,,,, '{l“ ’’’’’’ il
: .
usin SC
&P P0.2M S 0.01M
—=6M e \ B
. N T e S v T
using ps and index s, ~)
— The avg. no. of rows per s none 1

value = |ps|/]|s| =0.8/0.01
=80

-
’f

a”
-

-
-~

SC 6M

“

]

|

]

c 0.1M
(size)

What to materialize?

Which subcube and indexes?

Assume all queries are equi-
probable

— Queries associated with ps are
- Y, 0

— Yps Oy

— g Ops

— Y0,

Cannot materialize everything
Suppose

— all subcubes and indexes require
80M rows

— You can store only 25M rows

-
-
-
-
-
-
-
-
-

~ -
-~
-
-
-~
-~
-~
-

PSC gm
'II ~~~~~~~~~~~
L
I
PS 0.8M >C &M
P "~’: ””’ :
R Rl S :
L&”’ ~~~~~~ - |
S 0.01M c 01M
- '\\ ,¢f"/’ (size)
il Y § -
N»ﬂ
none 1

Simple Two-step Approach

Divide available space for

cubes and indexes PSC g
—sayequally 7 b ——
Use greedy algo to select pcem ps ggm ¢ &M
views (Lecture 3) e i
— say psc, ps, S, C, s, p, none 7 koo™ T .

yp p. po2M s 0.01M c 01iM
Then select indexes ™ N e (size)
— say g, Lo e

none 1

1.18M rows per query on
average

1-Greedy Approach

One step

Greedily choose
— subcube

— or the index on a subcube
(if the subcube is already
chosen)

psCc—l o= PS—l s =l —C
—S—p-—nhnone
average query cost = 0.74M
rows

— 40% savings

— % to index % to cube

— hard to decide a priori

But still can be improved

Ay

-
”

SC 6M
=]
'3]
|
—— 1
-~~J
cC 0.1M
,,,,,, (size)

10

Slice Queries

Yc 0-p=’widget’ R
— slice through the subcube pc
Y16k Os1..5 associated with the subcube G1..GkS1...S

— smallest cube that can answer this query

An r-dimensional subcube has 2" slice queries
— each dimension can go to either Yor o

every query is a slice query
An n-dimensional cube has "C, r-dimensional subcubes

Total slice queries for a data cube = 3"
— summing overallr=0ton

11

How many indexes per cube?

e.g. 4 with subcube ps

— 1,(ps), Ii(ps), 1,s(ps), Is,(ps)

order matters in an index

#Index for a view with m attr

—=2_4" "C, rl---> (e-1)ml

Total #indexes for a n-dimensional cube
— about 3n!

Total #fat indexes (same attr in view and index)
— about 2n!
— where index attributes are permutations of cube attributes

12

Materializing Views with Indexes

* |nput
— a set of views
— each view has a set of indexes
— a set of queries to be supported

— cost c(Q, V, J) of answering query Q using view V and index J
e estimated

— amount of space available S
 Goal:

— select a set of views and indexes that will minimize the total
cost to answer the queries not exceeding the space S

e NP-hard

— Lecture 3
— even if no index and unit cost

r-Greedy

Use greedy algorithms
r-Greedy

Generalization of 1-greedy

Instead of choosing at most one
index/view with max benefit per
unit space...

...choose “at most r views” or
index (for chosen views) every
step with max benefit per unit
Space as a set
Runtime: O(km")
* m: Number of structures (views/
index) in query graph
* k: Number of structures selected
* Max size (assuming unit size): S
+r-1 units
Only practical forr <4

14

Paper#2

An Array-Based Algorithm for Simultaneous
Multidimensional Aggregates

Zhao-Deshpande-Naughton
SIGMOD’97

Acknowledgement:

The following slides have been prepared using the slides
by Manuel Calimlim, in CS632-Advanced Database
Systems, Spring 2000, Cornell University

ROLAP vs MOLAP cube

ROLAP = Relational OLAP
— All algorithms so far were for ROLAP
— Acell in the space is a tuple
— e.g. (shoes, WestTown, 3-July-96, $34)
MOLAP = Multi-dimensional OLAP
— Data in sparse arrays
— just stores the data value $34
— The position in the array encodes (shoes, WestTown, 3-July-96)

This paper: MOLAP algorithm for cube

Similar example
— Dimensions = product, store, time
— Measure = sales

ROLAP Cube

In ROLAP systems, 3 main ideas for efficiently

1.

computing the CUBE

Group related tuples together (using sorting
or hashing)

Use grouping performed on sub-aggregates
to speed computation

Compute an aggregate from another
aggregate rather than the base table

MOLAP cube

* No “bring together related values”
— Data values are stored in their own fixed location
— Rather, visit those values in the right order so that the
computation is efficient
e Simultaneously compute spatially-delimited
partial aggregates
— so that a cell is not visited for each sub-aggregate

e Store arrays efficiently on disk

— “chunk” them into pieces

— do compression to avoid wasting space on cells with
no data

Multidimensional Array Storage

Data is stored in large, sparse arrays, which
leads to certain problems:

1. The array may be too big for memory

2. Many of the cells may be empty and the
array will be too sparse

Chunking Arrays

Sarawagi-Stonebraker, ICDE’94: Efficient Organization of Large
Multidimensional Arrays

Why chunk?

* A simple row major or column major layout (partitioning by
dimension) will favor certain dimensions over others

e e.g.assume (store, day) — row major
— to access a day may need multiple block read from disk

What is chunking?

* Divide an n-dimensional array into smaller n-dimensional
chunks and store each chunk as one object on disk

Lo

Lo

Chunks

Ca Ca Ca

Dimension A

g uolsuawiq

Array Compression

* No compression for dense arrays
— more than 40% filled with data
— fixed length chunks
— assign a null value to invalid cells
— Still compression since none of the dimension values are stored

 Compression for sparse array
— less than 40% filled, most cells invalid
— use “Chunk-offset compression”

— for each valid entry, store (offsetInChunk, data) where
offsetInChunk is the offset from the start of the chunk

— e.g. for 3-D array, convert address (I, j, k) into an offset

— chunks will be of variable length — needs metadata for each
chunk and data file

Naive Array Cubing Algorithm

Multiple passes

compute each group-by in a
separate pass with min memory

No overlap of computation and
minimizing /O cost

Similar to ROLAP, each

aggregation is computed from its
parent in the lattice.

Each chunkis :(;\jg regated
completely and then written to
disk before moving on the next
chunk.

e
’—' 1 ~~~_
- 1 -
-
- 1
- 1
"~ -
] \\\ /” pal
I \\ /’ NNN
»*
1 ’,\\ -
1 - S -
” & ¢’
L ~. o
~
-~ a
NNN \
-
- \
S \
-
.) -
Say

=
”

NNN
-~
-~
-~
-~

"
P
-

-,
-
~-~~
-
-—

c0

b3

bl

b0

Naive Array Cubing Algorithm

. c3 61 62~ & 64
. 45 46 47 48

29 30 31

| |
13 114/"1 15 1 16 /|32
| | | |
L A B RS B B I B
I s s I /}/
SN RN [P D NN (R S e
| | | |
51706 0A ‘7“7T§'7 -
| | | |
| | | | /
1.7 21,7 3|.7 4

Dimension A

* Compute AB

— sweep through the C-
Dimension B plane if no chunks

* Suppose ABC is stored in
a no. of chunks

— they are numbered in

dimension order (ABC)

Dimension C
— need to sweep chunk by

chunk

— To compute group by for
a b, need to sum over 4
chunks for c,, ¢, ¢, ¢4

c0

b3

Naive Array Cubing Algorithm

* Multiple aggregates in cube
e Compute A from AB or AC, not from ABC
* Embed a “minimum spanning tree” to the lattice — min size parent

. c3 61/ 6~ &3 64 PP :
c= 45 46 /47 48
o ® 730 31 % AB AC BC
:13/ 1147 15/: 16 732 Dimension B Pl S e
AR B g L e il
- ~ - Say
’ g | ’ ’ | s ’ | ’ g | /? L” ~~Nv¢” “J
JU U N U S S L A C
1ol ol 11| 112] | 24 N B B
| | | | g Sa \ -
|- —At =A== =+ — / e \ "
705 s, 6 s 7 s/ 8 ~~~~ \ "a’
/ : / : 7/ : 7/ : /20/ ‘~~\A’,¢
| | | | . .
i iTalel Hadadei el Dimension C
T I Y e none
a0 al a2 a3

Dimension A

Problems with Naive approach

64
c2
45 46/ 47 48
el 29 730 ~ 31 %
[
w0 13,1181 15 4 16 /32
i . i i L
P I A _,'1____1__'7
[[[[?/
b3 N O Sy
. ol ol 111|112, 24
= | [[[/
Fo|l-—A=-t A |-+ 51—
I ot A M P I %
| | | |
b0 "1 2 3 /
a0 al a2 a3

Dimension A

[}
Dimension B

Dimension C

Each sub aggregate is
calculated independently

E.g. this algorithm will
compute AB from ABC,
then rescan ABC to
calculate AC, then rescan
ABC to calculate BC

We need a method to
simultaneously compute
all children of a parent in
a single pass over the
parent

Single-Pass Multi-Way Array Cubing
Algorithm

The order of scanning is vitally important in
determining how much memory is needed to
compute the aggregates.

A dimension order O = (D;;, D;,, ... D;)) defines the
order in which dimensions are scanned

— Logical order, independent of physical layout on disk

D.| = size of dimension i
C.| = size of the chunk for dimension i

C.| << |D,| in general

Order determines memory requirement

c0

b3

bl

b0

N

N\

N

N

bl

N

N\

O
N
N
_1
ot
ol
N
N
L
-
=
N
|
-r1 1
[a—
) L !
NL NN
L

T T . -T7

[S—
N\
o |

.
Mo

fo¥]
o

Dimension A

Dimension B

Dimension C

|C.|] =4, |D,| =16 for all i
Dimension order (ABC)

For BC, we need 4 chunks

— I_%,C4 computes one chunk b,c, of

— give the memory to b,c,

For AC, we need 16 chunks
— allocate space to 4 chunks a,c,,
d;Co, 95Cq, a3C
— after reading 16 chunks (a plane)
give the memory to a,cy, a,¢y,
dCy, a3C

For AB, we need all 64 chunks

— allocate memory to all 16
chunks of AB as we read chunks
of the cube

— after aggregation is complete,
output those chunks in AB order

Concrete Example

* For BC group-bys, we
need 1 chunk (4x4)

¢ T T /V "
0 113 711471 15 71 16 7132 Dimension B

 For AC, we need 4 AL
chunks (16x4)) sl Al el

* For AB, we need to e
keep track of whole PR
slice of the AB plane,
so (16x16)

Dimension A

Minimum Memory Spanning Trees (MMST)

ABC Level 3
4x4x4
p=/ p=1 p=0
AB AC BC Level 2
16x16 16x4 4x4
A B C Level 1
16 4 4
ALL Level 0

1

MMST for a given dimension
order

p = size of the largest common
prefix between the current
group-by (size n-1) and its
parent

Il D] XTI, 11 10 na il

i=1top
D.=16,C =4
order = (A B C)

Q. What is the optimal
dimension order in general?

Effects of Dimension Order

ABCD
10x10x10x10
) N
ABC ABD ACD BCD

10x100x1000 10x100x10 10x10x10 10x10x10
AB AC BC AD BD CD
10x100 10x10 10x10 10x 10 10x10 10x10

A B C D

10 10 10 10

\

ALL
1

Figure 3: MMST for Dimension Order ABCD (Total Mem-
ory Required 4 MB)

DBCA
10x10x10x10
—/ N
DBC DBA DCA BCA

10000x100x 1000 ,TXYIO 10000x10x10 10x10x10
C B DB

D C DA BA CA
10000x10 10000x10 10x10 10x10

\ /

10x10 10000x100

/

C B D
10 10 10000 10
ALL

1

Figure 4: MMST for Dimension Order DBCA (Total Mem-
ory Required 4 GB)

|D,| =10, |D4| = 100, |D.| = 1000, |D,| = 10000

|CA| = |Cgl = |Cc| =|Cp| =10

Effects of Dimension Order

 The early elements in O (particularly the first one)
appear in the most prefixes

— contribute their dimension sizes to the memory
requirements

* The last element in O can never appear in any prefix

— The total memory requirement for computing the CUBE is
independent of the size of the last dimension

Optimal Dimension Order

Sort them on increasing dimension size
— orderis (D, D, ..., D;,)
— where |D,;| <= |D;,| <= |Dy3| <= <= | D,

The total memory requirement will be minimized
— a formal proof in the paper

The total memory requirement is Independent of the size of the largest
dimension

— huge benefit if the largest dimension is big

Extension to multiple passes
— limited memory, suppose required memory is not

— Right to left scan — first compute BC so that it is not divided into multiple
passes

Response Time (Seconds)

Results

40[} C I | 1 | i

350 Naive Array Alg uncompressed ——

Multi-way Array Alg uncompressed cepeons

. v

250 -
200 -
150;}

100 -

{} L 1) . 1) i

0 50 100 150 200 250
The Fourth Dimension size

Figure 5: Naive vs. Multi-way Array Alg.

Response Time (Seconds)

ROLAP vs. MOLAP

250 - Multi-way Array Alg w/o Loading -+

200 -
150 -

100 -

100 200 300 400 500 600 700 800 900 1000
Size of the Fourth Dimension

0

Response Time (Seconds)

250

200

150

100

ROLAP vs. MOLAP

ROLAP Alg —+—
Multi-way Array Alg w/o Loading -+~

o

010203040506070809 1 111213141516
Number of valid cells (million)

Figure 8: ROLAP vs. Multi-way Array for Data

Set 2

Response Time (Seconds)

300 r

I l

Multi-way Array Alg w/o Loading ——

250_

200 -

150 -

ROLAP Alg -+

4
Number of Dimensions

Figure 9: ROLAP vs. Multi-way Array for Data

Set 3

Memory constant, ROLAP does multiple passes
Array dimension size not changing with density
Largest dimension has no effect

36

MOLAP for ROLAP system

We can use the MOLAP algorithm with ROLAP systems:

1.
2.
3.

Scan the table and load into an array.
Compute the CUBE on the array.
Convert results into tables

Even with the additional cost of conversion between data
structures, the MOLAP algorithm

— runs faster than directly computing the CUBE on the ROLAP tables
— scales much better

the multidimensional-array can be used as a query evaluation data
structure rather than a persistent storage structure.

Summary

The multidimensional array of MOLAP should be chunked and
compressed

The Single-Pass Multi-Way Array method simultaneously updates
all GROUP-Bys in the CUBE with a single pass over the data

— assumes required memory is available
— Multiple passes are needed otherwise

By minimizing the overlap in prefixes and sorting dimensions in
order of increasing size, we can build a MMST that gives a plan for
computing the CUBE

On MOLAP systems, the CUBE is calculated much faster than on
ROLAP systems

— can be used even for cube for ROLAP

