CompSci 590.6 Understanding Data: Theory and Applications

Lecture 6

Mining Association Rules

Instructor: Sudeepa Roy

Email: sudeepa@cs.duke.edu

Today's Paper(s)

Fast Algorithms for Mining Association Rules
Agrawal and Srikant
VLDB 1994

18,603 citations on Google Scholar

One of the most cited papers in CS

Acknowledgement:

The following slides have been prepared using several presentations of this paper available on the internet (esp. by Ofer Pasternak and Brian Chase)

Mining Association Rules

- Retailers can collect and store massive amounts of sales data
 - transaction date and list of items
- Association rules:
 - e.g. 98% customers who purchase "tires" and "auto accessories" also get "automotive services" done
 - Customers who buy mustard and ketchup also buy burgers
 - Goal: find these rules from just transactional data (transaction id + list of items)

Applications

Can be used for

- marketing program and strategies
- cross-marketing
- catalog design
- add-on sales
- store layout
- customer segmentation

Notations

- Items I = $\{i_1, i_2, ..., i_m\}$
- D: a set of transactions
- Each transaction T ⊆ I
 - has an identifier TID
- Association Rule
 - $-X \rightarrow Y$
 - $-X, Y \subset I$
 - $-X \cap Y = \emptyset$

Confidence and Support

Association rule X→Y

- Confidence c = |Tr. with X and Y|/|Tr. with |X|
 - c% of transactions in D that contain X also contain Y
- Support s = |Tr. with X and Y| / |all Tr.|
 - s% of transactions in D contain X and Y.

Support Example

TID	Cereal	Beer	Bread	Bananas	Milk
1	X		X		X
2	Χ		X	X	X
3		X			X
4	Χ			X	
5			X		X
6	Χ				X
7		X		X	
8			Χ		

- Support(Cereal)
 - 4/8 = .5
- Support(Cereal → Milk)
 - 3/8 = .375

Confidence Example

TID	Cereal	Beer	Bread	Bananas	Milk
1	X		X		X
2	Χ		X	X	X
3		X			X
4	X			X	
5			X		X
6	Χ				X
7		X		X	
8			Χ		

- Confidence(Cereal → Milk)
 - 3/4 = .75
- Confidence(Bananas → Bread)
 - 1/3 = .33333...

Problem Definition

Input

- a set of transactions D
- min support (minsup)
- min confidence (minconf)

Goal

- generate all association rules that have
 - support >= minsup and
 - confidence >= minconf

For functional dependencies

- F.D. = two tuples with the same value of of X must have the same value of Y
 - $X \rightarrow Y => XZ \rightarrow Y$ (concatenation)
 - $-X \rightarrow Y, Y \rightarrow Z => X \rightarrow Z \text{ (transitivity)}$

For association rules

- X → A does not mean XY→A
 - May not have the minimum support
 - Assume one transaction {AX}
- $X \rightarrow A$ and $A \rightarrow Z$ do not mean $X \rightarrow Z$
 - May not have the minimum confidence
 - Assume two transactions {XA}, {AZ}

Divide into two subproblems

- Find all sets of items (itemsets) that have support above the minimum support
 - #transactions containing them >= threshold
 - these are called large itemsets
- 2. Use large item sets to find rules with at least minimum confidence
 - Naïve algorithm:
 - For every large itemset p,
 - find all non-empty subsets of p
 - for each such subset q, if support(p)/support(q) >= minconf
 - output $q \rightarrow (p q)$
- Paper focuses on subproblem 1
 - if support is low, confidence may not say much
 - subproblem 2 in full version
- Two main algorithms: Apriori and AprioriTID

Determining Large Itemsets

- Algorithms make multiple passes over the data (D) to determine which itemsets are large
- First pass:
 - Count support of individual items
 - Determine which are large
- Subsequent Passes:
 - Use itemsets from previous passes sets to determine new potential" large itemsets ("candidate" large itemsets sets)
 - Count support for candidates from data (D) and remove ones not above minsup to get "actual" large itemsets
- Repeat

Notations

k-itemset	An itemset having k items.		
	Set of large k-itemsets		
L_k	(those with minimum support).		
	Each member of this set has two fields:		
	i) itemset and ii) support count.		
	Set of candidate k-itemsets		
C_k	(potentially large itemsets).		
	Each member of this set has two fields:		
	i) itemset and ii) support count.		
	Set of candidate k -itemsets when the TIDs		
\overline{C}_k	of the generating transactions are kept		
	associated with the candidates.		

ACTUAL

POTENTIAL

Used in both Apriori and AprioriTID

Used in AprioriTID

Algorithm Apriori

For
$$(k=2;L_{k-1}\neq\phi;k++)$$
 do begin $C_k=\operatorname{apriori-gen}(L_{k-1});$ Generate new k-itemsets candidates for all transactions $t\in D$ do begin $C_t=\operatorname{subset}(C_k,t)$ for all candidates $c\in C_t$ do $c.count++;$ $C_t=\operatorname{candidates} c$ Count individual item occurrences

Find the support of all the candidates

 $C_t=\operatorname{candidates} c$ Count individual item occurrences

$$C_t=\operatorname{candidates} c$$
Find the support of all the candidates

$$C_t=\operatorname{candidates} c$$

$$C_t=\operatorname{candidates} c$$
Count individual item occurrences

Find the support of all the candidates

$$C_t=\operatorname{candidates} c$$
Take only those with support >= minsup

end

 $Answer = \bigcup L_k;$

Apriori-Gen

Join step

insert into C_k select $p.item_1$, $p.item_2$, $p.item_{k-1}$, $q.item_{k-1}$ first items. / where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-2} < q.item_{k-1}$

p and q are two large
(k-1)-itemsets identical in all k-2
first items.
/

Prune step

for all itemsets $c \in C_k$ do for all (k-1)-subsets s of c do if $(s \notin L_{k-1})$ then delete c from C_k

Join by adding the last item of q to p

Check all the subsets, remove all candidate with some "small" subset

Apriori-Gen Example - 1

Step 1: Join (k = 4)

Assume numbers 1-5 correspond to individual items

```
L<sub>3</sub> C<sub>4</sub>

• {1,2,3}

• {1,2,4}

• {1,3,4}

• {1,3,5}

• {2,3,4}
```

Apriori-Gen Example - 2

Step 1: Join (k = 4)

Assume numbers 1-5 correspond to individual items

Apriori-Gen Example - 3

```
Step 2: Prune (k = 4)
```

 Remove itemsets that can't have the required support because there is a subset in it which doesn't have the level of support i.e. not in the previous pass (k-1)

 L_3

 $\mathsf{C}_{\!\scriptscriptstyle A}$

- {1,2,3}
- {1,2,4}
 - {1,3,4}
- {1,3,5}
- {2,3,4}

- {1,2,3,4}
- {1,3,4,5}

No $\{1,4,5\}$ exists in L₃ Rules out $\{1, 3, 4, 5\}$

Comparisons with previous algos (AIS, STEM)

L_{k-1} to C_k

- Read each transaction t
- Find itemsets p in L_k that are in t
- Extend p with large items in t and occur later in lexicographic order

L₃

- {1,2,3}
- {1,2,4}
- {1,3,4}
- {1,3,5}
- {2,3,4}

 C_4

- {1,2,3,4}
- {1,2,3,5}
- {1,2,4,5}
- {1,3,4,5}
- {2,3,4,5}

 $t = \{1, 2, 3, 4, 5\}$

5 candidates compared to 2 in Apriori

Correctness of Apriori

```
insert into C_k select p.item_1, p.item_2, p.item_{k-1}, q.item_{k-1} from L_{k-1}p,L_{k-1}q where p.item_1 = q.item_1,..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
```

Show that $C_k \supseteq L_k$

- Any subset of large itemset must also be large
- for each p in L_k, it has a subset q in L_{k-1}
- We are extending those subsets q in Join with another subset q' of p, which must also be large
 - equivalent to extending L_{k-1} with all items and removing those
 - whose (k-1) subsets are not in L_{k-1}
- Prune is not deleting anything from L_k

```
for all itemsets c \in C_k do for all (k-1)-subsets s of c do if (s \notin L_{k-1}) then delete c from C_k
```

Variations of Apriori

- In the k-th pass
 - Not only update C_k
 - update candidates C'_{k+1}
 - $-C'_{k+1} \supseteq C_{k+1}$ since it is generated from L_k
 - Can help when the cost of updating and keeping in memory C'_{k+1} C_{k+1} additional candidates is less than scanning the database

Subset Function

- Candidate itemsets in C_k are stored in a hash-tree (like a B-tree)
 - interior node = hash table
 - leaf node = itemsets
 - recall that the itemsets are ordered
- To find all candidates contained in a transaction t
 - if we are at a leaf
 - find which itemsets are contained in t
 - add references to them in the answer set
 - if we are at an interior node
 - we have reached it by hashing an item i
 - hash on each item that comes after i in t
 - repear
 - if we are at the root, hash on every item in t
- For any itemset c in a transaction t
 - the first item must be in the root

```
L_{1} = \{large\ 1\text{-}itemsets\}
For\ (k = 2;\ L_{k-1} \neq \phi;\ k++)\ \text{do begin}
C_{k} = \text{apriori-gen}\ (L_{k-1});
forall\ transactions\ t \in D\ \text{do begin}
C_{t} = \text{subset}\ (C_{k},t)
forall\ candidates\ c \in C_{t}\ \text{do}
c.\ count\ ++;
end
end
L_{k} = \{\ c \in C_{k} | c.\ count\ \geq minsup\}
end
Answer = \bigcup L_{k};
```

Problem with Apriori

Every pass goes over the entire dataset

```
For (k = 2; L_{k-1} \neq \phi; k++) do begin

C_k = \text{apriori-gen}(L_{k-1});

forall transactions t \in D do begin

C_t = \text{subset}(C_k, t)

forall candidates c \in C_t do

c.count + +;

end

L_k = \{c \in C_k | c.count \geq minsup\}
```

- Database of transactions is massive
 - Can be millions of transactions added an hour
- Scanning database is expensive $Answer = \bigcup_{k} L_{k}$;
 - In later passes transactions are likely NOT to contain large itemsets
 - Don't need to check those transactions

AprioriTid

- Also uses Apriori-Gen
- But scans the database D only once.
- Builds a storage set C*_K
 - "bar" in the paper instead of *
- Members are of the form < TID, {X_k} >
 - each X_k is a potentially large k-itemset present in the transaction TID.
 - For k=1, C*₁ is the database
 - items i as {i}
- If a transaction does not have a candidate k-itemset, C*_K
 will not contain anything for that TID
- C*_K may be smaller than #transactions, esp. for large values of k
- For smaller values of k, it may be large

See the examples in the following slides and then come back to the algorithm

Algorithm AprioriTid

```
L_1 = \{large \ l - itemsets\} \leftarrow
C_1^{\hat{}} = database D; \leftarrow
For (k = 2; L_{k-1} \neq \phi; k++) do begin
          C_k = \operatorname{apriori-gen}(L_{k-1}); \leftarrow
           C_{k}^{^{\wedge}} = \phi
           for all entries t \in C_{k-1} do begin
                     C_t = \{c \in C_t | (c - c/k) \in t.set - of - items\}
                                \land (c-c/k-1) \in t.set-of-items;
                     for all candidates c \in C_t do
                                c.count + +;
                                if (C_t \neq \varphi) then C_k^{\hat{}} + = < t.TID, C_t > ;
                     end
           end
          L_{\iota} = \{ c \in C_{\iota} | c.count \ge minsup \}
end
```

Count item occurrences

The storage set is initialized with the database

Generate new k-itemsets candidates

Build a new storage set

Determine candidate itemsets which are containted in transaction TID

Find the support of all the candidates

Remove empty entries

Take only those with support over minsup

 $Answer = \bigcup L_k$;

AprioriTid Example

Database

TID	Items
100	$1\ 3\ 4$
200	$2\ 3\ 5$
300	$1\ 2\ 3\ 5$
400	2 5

7	7	•
(j	1

TID	Set-of-Itemsets
100	{ {1}, {3}, {4} }
200	$\{ \{2\}, \{3\}, \{5\} \}$
300	$\{ \{1\}, \{2\}, \{3\}, \{5\} \}$
400	$\{ \{2\}, \{5\} \}$

 L_1

Itemset	Support
{1}	2
{2}	3
{3}	3
{5 }	3

27

AprioriTid Example

Now we need to compute the supports of C_2 without looking at the database D from C_1^*

AprioriTid Example

	2
Itemset	Support
{1 2}	1
{1 3}	
$\{1\ 5\}$	
{2 3}	
$\{2\ 5\}$	
$\{3\ 5\}$	

300 has both {1} and {2} Support = 1 also add <300, {1, 2}> to C*,

\overline{C}_1

\overline{T}	ID	Set-of-Itemsets
1	00	{ {1}, {3}, {4} }
	00	$\{ \{2\}, \{3\}, \{5\} \}$
3	00	$\{ \{1\}, \{2\}, \{3\}, \{5\} \}$
4	00	$\{ \{2\}, \{5\} \}$

for all entries $t \in \overline{C}_{k-1}$ do begin

```
// determine candidate itemsets in C_k contained
   // in the transaction with identifier t.TID
   C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets } \land
         (c - c[k-1]) \in t.set-of-itemsets};
   forall candidates c \in C_t do
      c.count++:
   if (C_t \neq \emptyset) then \overline{C}_k += \langle t.\text{TID}, C_t \rangle;
end
```

AprioriTid Example

AprioriTid Example

C_2			$\overline{C}_{ extsf{1}}$
Itemset	Support		Set-of-Itemsets
{1 2}	1	100	$\{ \{1\}, \{3\}, \{4\} \}$
{1 3}	2	200	$\{\{2\}, \{3\}, \{5\}\}$
{1 5}	1	300	$\{\{1\}, \{2\}, \{3\}, \{5\}\}$
{2 3}	$2 \longrightarrow$	400	[{ {2}, {5} }
$\{2\ 5\}$	3	100	((*), (°))
$\{3,5\}$	2^{-}		

Add the rest

AprioriTid Example

C_2		\overline{C}_2		
Itemset	Support	TID	Set-of-Itemsets	
$\{1\ 2\}$	1	> 100	{ {1 3} }	
$\{1\ 3\}$	2 <	200	$\{2\ 3\}, \{2\ 5\}, \{3\ 5\}\}$	
$\{1\ 5\}$	1	3 00 3	$\{\{1\ 2\}, \{1\ 3\}, \{1\ 5\}, \}$	
$\{2\ 3\}$	2		$\{2\ 3\}, \{2\ 5\}, \{3\ 5\}\}$	
$\{2\ 5\}$	3	→ 400	$\left\{\left\{25\right\}\right\}$	
${35}$	2 /			

How C*₂ looks

AprioriTid Example

 C_2

 L_2

Itemset	Support
{1 2}	1
$\{1\ 3\}$	2
$\{1\ 5\}$	1
$\{2\ 3\}$	2
$\{2\ 5\}$	3
${35}$	2

	_
Itemset	Support
{1 3}	2
→ {2 3}	2
$\{2\ 5\}$	3
${35}$	2

The supports are in place Can compute L₂ from C₂

AprioriTid Example

Next step

AprioriTid Example

	, 0	
Itemset	Support	
$\{2\ 3\ 5\}$		

 C_2

Look for transactions containing {2, 3} and {2, 5}

Add <200, {2,3,5}> and <300, {2,3,5}> to C*₃

C_2	
TID	Set-of-Itemsets
100	{ {1 3} }
→ 200	$\{ \{2\ 3\}, \{2\ 5\}, \{3\ 5\} \}$
3 00 ≥	$\{ \{1 \ 2\}, \{1 \ 3\}, \{1 \ 5\}, $
	$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$
400	$\{ \{2 \ 5\} \}$

 \overline{C}_{α}

```
for all entries t \in \overline{C}_{k-1} do begin
    // determine candidate itemsets in C_k contained
    // in the transaction with identifier t.TID
   C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets } \land
         (c - c[k-1]) \in t.set-of-itemsets};
   forall candidates c \in C_t do
      c.count++;
   if (C_t \neq \emptyset) then \overline{C}_k += \langle t.\text{TID}, C_t \rangle;
                                                               35
end
```

AprioriTid Example

 C_3

Itemset	Support
$\{2\ 3\ 5\}$	2

 \overline{C}_3

	<u> </u>
TID	Set-of-Itemsets
200	$\{ \{2 \ 3 \ 5\} \}$
300	$\{ \{2 \ 3 \ 5\} \}$

 L_3

Itemset	Support
$\{2\ 3\ 5\}$	2

C*₃ has only two transactions (we started with 4)

L₃ has the largest itemset C₄ is empty Stop

Discovering Rules (from the full version of the paper)

Naïve algorithm:

- For every large itemset p
 - Find all non-empty subsets of p
 - For every subset q
 - Produce rule $q \rightarrow (p-q)$
 - Accept if support(p) / support(q) >= minconf

Checking the subsets

 For efficiency, generate subsets using recursive DFS. If a subset q does not produce a rule, we do not need to check for subsets of q

Example

Given itemset: ABCD

If ABC → D does not have enough confidence

then AB -> CD does not hold

Reason

```
For any subset q' of q:
  Support(q') >= support(q)
   confidence (q' \rightarrow (p-q'))
= support(p) / support(q')
<= support(p) / support(q)
= confidence (q \rightarrow (p-q))
```

Simple Algorithm

end

branch cuts here

Faster Algorithm

If (p-q) → q holds than all the rules
 (p-q') → q' must hold
 – where q' ⊆ q and is non-empty

Example:

```
If AB \rightarrow CD holds,
then so do ABC \rightarrow D and ABD \rightarrow C
```

Idea

- Start with 1-item consequent and generate larger consequents
- If a consequent does not hold, do not look for bigger ones
- The candidate set will be a subset of the simple algorithm

Performance

- Synthetic data modeling "real world"
 - People tend to buy things in sets
- Used the following parameters:

D	Number of transactions	
T	Average size of the transactions	
I	Average size of the maximal potentially	
	large itemsets	
L	Number of maximal potentially large itemsets	
N	Number of items	

- The above are used in the names of the datasets: T10I2D100K
- Pick the size of the next transaction from a Poisson distribution with mean |
 T|
- Randomly pick determined large itemset and put in transaction, if too big overflow into next transaction

Performance

Time (sec)

T5.I2.D100K

Support decreases => time increases

- Apriori beats AIS and SETM
 - their candidate set is much larger
- AprioriTID is "almost" as good as Apriori, BUT Slower for larger problems

 C*_k does not fit in memory and increases with #transactions

Performance

- AprioriTid is effective in later passes
 - Scans C*_k instead of the original dataset
 - becomes small compared to original dataset
- When fits in memory,
 AprioriTid is faster than
 Apriori

AprioriHybrid

- Use Apriori in initial passes
- Switch to AprioriTid when it can fit in memory
 - estimate the size of C*_k if it had been generated
 - = $\Sigma_{c \in Ck}$ support(c) + #transactions
 - if it fits in memort and fewer larger candidates in the current pass than previous pass, then switch
 - to avoid the case that C*k fits in the current pas but not in the next pass
- Switch happens at the end of the pass
 - Has some overhead to switch
- Relies on size drop
 - If switch happens late, will have slightly worse performance
- Still mostly better or as good as apriori

Summary

- Association rules are important
- This paper gives algorithms to find all association rules with required support and confidence
- Perform better than previous algorithms
- Scale well for large datasets