CompSci 590.6

Understanding Data:
Theory and Applications

Lecture 6
Mining Association Rules

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu

)
Today’s Paper(s)
Fast Algorithms for Mining Association Rules
Agrawal and Srikant
VLDB 1994

18,603 citations on Google Scholar

One of the most cited papers in CS

* Acknowledgement:

The following slides have been prepared using several
presentations of this paper available on the internet
(esp. by Ofer Pasternak and Brian Chase)

Mining Association Rules

e Retailers can collect and store massive amounts
of sales data

— transaction date and list of items

e Association rules:

— e.g. 98% customers who purchase “tires” and “auto
accessories” also get “automotive services” done

— Customers who buy mustard and ketchup also buy
burgers

— Goal: find these rules from just transactional data
(transaction id + list of items)

Applications

* Can be used for
— marketing program and strategies
— cross-marketing
— catalog design
— add-on sales
— store layout
— customer segmentation

Notations

ltems | ={i, iy, i}
D : a set of transactions

Each transaction T & |
— has an identifier TID

Association Rule
—X=2Y

— X, Y C|
—XNY=9Y

Confidence and Support

e Association rule X=2Y

 Confidence c = |Tr. with Xand Y|/|Tr. with | X]|

— ¢c% of transactions in D that contain X also contain Y

 Supports=|Tr.withXand Y|/ |all Tr.|

— s% of transactions in D contain X and Y.

Support Example
TID_|Cereal |Beer |Bread | Bananas |Milk
X X X

1

2 X X X
3 X

4 X X
5 X

6 X

7 X X
8 X

* Support(Cereal)
e 4/8=.5

* Support(Cereal 2> Milk)
 3/8=.375

Confidence Example

TID | Cereal | Beer _|Bread | Bananas | Milk
X X X

1

2 X X X
3 X

4 X X
5 X

6 X

7 X X
8 X

* Confidence(Cereal 2> Milk)
e 3/4=.75

* Confidence(Bananas = Bread)
 1/3=.33333...

Problem Definition

* |nput
— a set of transactions D
— min support (minsup)

— min confidence (minconf)

e Goal

— generate all association rules that have
e support >= minsup and
e confidence >= minconf

X =2 Y is not a Functional Dependency

For functional dependencies
e F.D.=two tuples with the same value of of X must have the
same value of Y
— X=2Y => XZ->Y (concatenation)
— X=2VY,Y2>Z => X=2>Z(transitivity)

For association rules
e X —2> Adoes not mean XY—2>A
— May not have the minimum support
— Assume one transaction {AX}
e X—2>AandA—>ZdonotmeanX—>7Z

— May not have the minimum confidence
— Assume two transactions {XA}, {AZ}

11

1.

2.

Divide into two subproblems

Find all sets of items (itemsets) that have support above the minimum
support

— {#ftransactions containing them >=threshold

— these are called large itemsets
Use large item sets to find rules with at least minimum confidence

— Naive algorithm:

— For every large itemset p,

— find all non-empty subsets of p

— for each such subset g, if support(p)/support(q) >= minconf

— outputgq=> (p-q)
Paper focuses on subproblem 1
— if support is low, confidence may not say much

— subproblem 2 in full version

Two main algorithms: Apriori and AprioriTID

12

Determining Large Itemsets

e Algorithms make multiple passes over the data (D) to
determine which itemsets are large

* First pass:
— Count support of individual items
— Determine which are large

e Subsequent Passes:

— Use itemsets from previous passes sets to determine new
potential” large itemsets (“candidate” large itemsets sets)

— Count support for candidates from data (D) and remove
ones not above minsup to get “actual” large itemsets

* Repeat

Notations

k-itemset

An itemset having k items.

L k

Set of large k-itemsets

(those with minimum support).

Flach member of this set has two fields:
1) itemset and 1) support count.

Set of candidate k-itemsets
(potentially large itemsets).

Fach member of this set has two felds:
1) itemset and 1) support count.

Set of candidate k-itemsets when the TIDs
of the generating transactions are kept

assoclated with the candidates.

ACTUAL

POTENTIAL

Used in both Apriori and
AprioriTID

Used in AprioriTID

14

Algorithm Apriori

L, = {large I-itemsets}! <
For(k=2;L,_, =¢,; k++) dobegin
C, = (apriori- gen(L, ,); J

forall transactions & D do begin
C, 4subset (C,.1) J
forall candidatesc € C, do

c.count + +;

end
end
L, = {c €C|c.count = minsup,

end
Answer = U L.,
k

Count individual item occurrences

Generate new k-itemsets candidates

count=0

Find the support of all the candidates

C, = candidates contained in t

increment count

Take only those with support >= minsup

Apriori-Gen

® Join step
p and q are two large
insert into C, (k-1)-itemsets identical in all k-2
select p.item,, p.item,, p.item,_,,q.item,_, first items.

from L, _,p,L,_,q

where p.item, = q.item, ,..., p.item,_, = q\tem,_,, p.item,_, < q.item,_,

®
Prune step

forall itemsets ¢ € C, do
forall (k- 1)-subsets s of ¢ do
if (s & L, ,) then
delete ¢ from C, Check all the subsets, remove all

candidate with some “small” subset

Apriori-Gen Example - 1

Step 1: Join (k= 4)

Assume numbers 1-5 correspond to
individual items

L, C,

- {1,2,3

. {1,2,4;\- {1,2,3,4}
{1,3,4}

* {1,3,5}

{2,3,4}

Apriori-Gen Example - 2

Step 1: Join (k= 4)

Assume numbers 1-5 correspond to
individual items

B C,
* {1,2,3}
’ {1’2'4} * {11213/4}

{1,3,4} {1,3,4,5}
{1,3,5} /

{2,3,4}

Apriori-Gen Example - 3

Step 2: Prune (k = 4)
e Remove itemsets that can’t have the

required support because there is a subset
in it which doesn’t have the level of support
i.e. not in the previous pass (k-1)

L3 C4
. {1,2,3} .
RV o B e
e {1,3,5}

{2,3,4}

Comparisons with previous algos
(AIS, STEM)

L., to C,
* Read each transaction t
* Finditemsets pin L thatareint
* Extend p with large items in t and occur later in lexicographic order

t= {1I 2’ 3’ 4’ 5}

{1,2,3} * {1,2,3,4}
{1,2,4} * {1,2,3,5}
{1,3,4) - 11,245} 5 candidates compared to 2 in Apriori
{11315} * {1131415}
{21314} * {21314I5}

20

Correctness of Apriori

insert into C,

select p.item,, p.item,, p.item,_,,q.item, _,

from L, ,p,L, ,q

where p.item, = q.item, ,...,

Show that C, 2 L,

Any subset of large itemset must also be
large

foreach pin L, it has a subset qin L,

We are extending those subsets g in Join
with another subset g’ of p, which must
also be large

* equivalent to extending L, , with all
items and removing those

whose (k-1) subsets are not in L, ,

Prune is not deleting anything from L,

p.item,_, = q.item,_,, p.ilem,_, <gq.litem, _,

forall itemsets ¢ € C, do
forall (k-1)-subsets s of c do
if (s & L, ,) then
delete ¢ from C,

Variations of Apriori

* In the k-th pass
— Not only update C,
— update candidates C', ,,
—C',1 =2 C,,,Since it is generated from L,

— Can help when the cost of updating and keeping
in memory C',,, - C,,, additional candidates is less
than scanning the database

Subset Function

Candidate itemsets in C, are stored in a hash-tree (like a B-tree)

To find all candidates contained in a transaction t

— if we are at the root, hash on every item in t

For any itemset c in a transaction t

interior node = hash table
leaf node = itemsets

recall that the itemsets are ordered

if we are at a leaf

e find which itemsets are contained in t
e add references to them in the answer set

if we are at an interior node

* we have reached it by hashing an itemi
* hash on each item that comes afteriint

®* repear

the first item must be in the root

L, = {large I-itemsets}
For(k=2;L,, =¢,; k++) dobegin
C, = aprori-gen(L, ,);

forall transactions t € D do begin
[C, =subset(C,,?)]

t

forall candidates c € C, do

c.count + +;

end
end
L, = {c €C|c.count = minsup}

end
Answer = U L;
k

23

Problem with Apriori

L, = {large I-itemsets}

* Every pass goes over the entire e dobeain
dataset ¢, = apriori-gen (L,):

{orall transactions t € D do begin]
C, =subset(C,,?)
forall candidates c € C, do

 Database of transactions is massive . count + +:
— Can be millions of transactions added _, ™
an hOur L, = {c €C|c.count = minsup}

end

* Scanning database is expensive,

— In later passes transactions are likely k
NOT to contain large itemsets

— Don’t need to check those transactions

24

AprioriTid

Also uses Apriori-Gen
But scans the database D only once.

Builds a storage set C*
— “bar” in the paper instead of *

Members are of the form < TID, {X,} >

— each X, is a potentially large k-itemset present in the transaction
TID.

— For k=1, C* is the database
* itemsias {i}
If a transaction does not have a candidate k-itemset, C*
will not contain anything for that TID

C* . may be smaller than #transactions, esp. for large values
of k

For smaller values of k, it may be large

25

See the examples in the following slides
and then come back to the algorithm

Algorithm AprioriTid
L, = {large l-itemsets} <

C, = database D; <— The storage set is initialized
For(k=2;L_, =¢,k++) dobegin with the database
Cp = apriori-gen (L,)i<— Generate new k-itemsets
C, =¢; candidates

forall entries t€ C,_, do begin Build a new storage set

C, = {ceC\|(c-c[k] Et.set —of —ite
A(c—clk —1])Et.set - of —items); Det'ermlne cand.ldate itemsets
, which are containted in
forall candidatesc € C, dg

transaction TID

c.count + +;

if (C, = ¢)then C, + =<t.TID,C, > ; Find the support of all the
candidates
end \
ond

L, = {c €CJccount =z minsupp——-—

end Take only those with
Answer = ULk; support over minsup
k

Min support = 2

AprioriTid Example

Database
TID | Items
100 | 134
200 | 235
300 [1235
400 | 25

4
TID | Set-of-Itemsets
100 1 { {1}, {3}, {4} }
200 | { {2}, {3}, {5} }
300 | { {1}, {2}, {3}, {5} }
400 | { {2}, {5} }

Ly
[temset | Support
{1} 2
{2} 3
{3} 3
5} 3 1

Min support =2
AprioriTid Example

Ll C'2
[temset | Support [temset | Support

{ 1 } 2 Apriori-gen { 12 }
(2} 3 | {13}
{3} 3 {15}
{5} 3 {2 3}

{25}

{3 5}

Now we need to compute the supports of C,
without looking at the database D
from C*,

28

&

Min support = 2

AprioriTid Example

Itemset

Support

{12}
13}
{15}
12 3}
{25}
135}

1

C,
TID | Set-of-ltemsets
100 | { {1}, {3}, {4} }
200 | { {2}, 3). {5})
300 | { {1}, {2}, {3}, {5} }
400 | { {2}, {5} }

300 has both {1} and {2}

Support =1

also add <300, {1, 2}> to C*,

forall entries t € Cr_; do begin
// determine candidate itemsets in Cjx contained
// in the transaction with identifier ¢.'I'lD
Cy = {c € Cx | (¢ — c[k]) € t.set-of-itemsets A
(¢ — c[k—1]) € t.set-of-itemsets};
forall candidates ¢ € C, do
c.count++:
if (C; #0) then Cx += < t. 11D, C; >;

end

29

Min support =2

AprioriTid Example

C5 C,

[temset | Support TID | Set-of-Itemsets

{12} L L Fioo {1, BY, (41)
{13} 2 <<:;\\ 200 | { {2}, {3}, {5} }

}; g% =300 | { {1}, {2}, {3}, {5} }
3 51 400 | { {2}, {5} }
{3 5}

Add <100, {1, 3}> to C*,

Add <300, {1, 3}> to C*,

Min support = 2

AprioriTid Example

Ch -
It{elmQS;t Supfort TID | Set-of-Itemsets
{13} : 100 | { {1}, {3}, {4} }
{15} L | 20001 1425, 435, 5]
{2 3) 2 % ?igg } % %,}{3}, {5} }
25 3 ” :
}3 5% 2

Add the rest

Min support = 2

AprioriTid Example

02 02
Itemset | Support TID | Set-of-Itemsets
{12} 1 100 | { {13}]
E g% i <§%200 { {23}, {25}, {35}
£2300 | { {12}, {13}, {15},
3} |2 | | sy (25, 35})
{25} 3 %\»400 { {25}
{3 5} 2

How C*, looks

Min support =2
AprioriTid Example

Co Lo
[temset | Support Itemset | Support

{1 2} 1 {1 3} 2
{1 3} 2 5 {2 3} 2
{15) | 25 3
{2 3} 2 {3 5})
{2 5} 3

{3 5) 2

The supports are in place
Can compute L, from C,

33

Min support = 2

AprioriTid Example

Lo » Cl
Itemset | Support Apriorigen | Itemset [Support
{13) 2 | {235}
{2 3} 2
{2 5) 3
{3 5} 2

Next step

34

Min support = 2
AprioriTid Example
03 52

Itemset | Support TID | Set-of-Itemsets

{2 35}~*\\\l!!!;;£::: 100 | { {13} }
200 | { {23}, {25}, {35} }
=300 | { {12}, {13}, {15},

1235, 125}, {35} }

Look for transactions
containing {2, 3} and {2, 5} 400 { {2 5} }

forall entries t € C'y_; do begin
Add <200, {2,3,5}> and // determine candidate itemsets in Cy contained
<300, {2,3,5}> to C*3 // in the transaction with identifier ¢."I'lD

Cy = {c € Cx | (c — c[k]) € t.set-of-itemsets A

(¢ — c[k—1]) € t.set-of-itemsets};
forall candidates ¢ € C; do
c.count—++;

if (C; #0) then Cx += < . T1D, C; >; .

end

Min support = 2

AprioriTid Example

;s Ca
Ttemset | Support TID | Set-of-Itemsets
1235) 5 200 { {235} }
300 { {235} }
Ls |
It t | S t C*, has only two transactions
()er;s; qu = (we started with 4)
{2) - L, has the largest itemset

C, Is empty
Stop

36

Discovering Rules
(from the full version of the paper)

Naive algorithm:

* For every large itemset p
— Find all non-empty subsets of p

— For every subset g

* Produce rule g =2 (p-q)
* Accept if support(p) / support(q) >= minconf

Checking the subsets

 For efficiency, generate subsets using recursive
DFS. If a subset g does not produce a rule, we do
not need to check for subsets of g

Example

Given itemset : ABCD

If ABC = D does not have enough confidence
then AB - CD does not hold

38

Reason

For any subset g’ of q:
Support(q’) >= support(q)

confidence (g’ =2 (p-q’))

support(p) / support(q’)

<= support(p) / support(q)
confidence (q =2 (p-q))

39

|
Simple Algorithm a=g

forall large itemsets |, k=2 do « Check all the large itemsets

genrules(l,l,)

Check all the subsets

procedure genrules (/, large k-itemset, a,: large m-itemse
A= {(m-1)-itemseta, |a, ,Ca, };

foralla, , € A do begin Check confidence of
conf = support(l,)/support(a,) A il
if (conf = minconf) then begin Output the rule

output the rulea, , = (I, — a,_,); C h S
. ontinue the DFS over
if (m~1> 1) then /

call genrules(l ,a, ,),

If there is no confidence the DFS
branch cuts here

end

fx

end

Faster Algorithm

* If (p-q) = q holds than all the rules
(p-q’) 2 g’ must hold

— where g’ & g and is non-empty

Example:
If AB = CD holds,
then so do ABC 2> Dand ABD - C

ldea

e Start with 1-item consequent and generate larger
consequents

* If aconsequent does not hold, do not look for bigger ones
 The candidate set will be a subset of the simple algorithm

41

Performance

Synthetic data modeling “real world”
— People tend to buy things in sets

Used the following parameters:

|D| | Number of transactions
|T| | Average size of the transactions
|I| | Average size of the maximal potentially
large 1temsets
|| | Number of maximal potentially large itemsets
N | Number of items

The above are used in the names of the datasets: T1012D100K

Pick the size of the next transaction from a Poisson distribution with mean |
T

Randomly pick determined large itemset and put in transaction, if too big

overflow into next transaction .

Performance

T5.12.D100K

. 70 } e
Support decreases => time ApronTd -+
. 60 | p/,, 1
increases o -’
Apriori beats AlS and SETM s |
Y S
— their candidate set is much larger N ’
AprioriTID is “almost” as good as of .
Apriori, BUT Slower for larger o
problems T10.12.D100K 1000 120-12.D 100K |
160 T T T 000 | . .AI,S - _
140 | Apr/i:;ﬁ? :_ E 800 | Ap”;f’glllﬂ A |
C*, does not 0 | 00|
4 1 ~ 100} S 600 ¢
fitin memory : 0 il
and increases & | a0
300
With S 200 +
#transactions e ED ——
02 15 1075 05 033 025 2 15 1 075 0.5 0.33 025
Minimum Support Minimum Support

43

Performance

e AprioriTid is effective in

14 - . . .]

later passes N pprton |
— Scans C*, instead of the N

original dataset s
— becomes small compared 727 |

to original dataset) N

* When fits in memory, O o

AprioriTid is faster than R

Apriori

44

AprioriHybrid
Use Apriori in initial passes

Switch to AprioriTid when it can fitin N sororma =]
memory 0| frromene
— estimate the size of C*, if it had been generated

T10.12.D100K
40 -

25

8
— =3_c o Support(c) + #transactions :
— if it fits in memort and fewer larger candidates in
the current pass than previous pass, then switch
— to avoid the case that C*k fits in the current pas e
but not in the next pass o Minmum Support
'I’l(J.lf‘l.lgét)UI\ ' ' ' ’ |
. AprioriTid -+)
Switch happens at the end of the pass ol Apnofiﬁgggizj
— Has some overhead to switch 0
35t
Relies on size drop g wf
g 5}
— If switch happens late, will have slightly worse £ -
performance 15 |
10 f
Still mostly better or as good as apriori 5 e

2 1.5 1 0.75 05 4§.33 0.25
Minimum Support

Summary

Association rules are important

This paper gives algorithms to find all
association rules with required support and
confidence

Perform better than previous algorithms
Scale well for large datasets

46

