CompSci 590.6 Understanding Data: Theory and Applications

Lecture 9

Explanation for Database Queries ("Detour" lecture)

Instructor: Sudeepa Roy

Email: sudeepa@cs.duke.edu

Classroom changed
 North 306

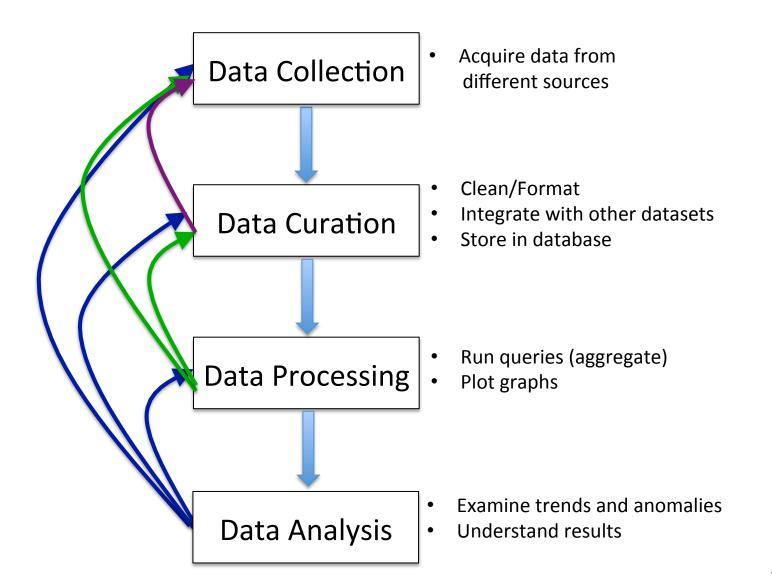
Today's Paper(s)

Detour lecture:

A Formal Approach to Finding Explanations for Database Queries Roy-Suciu SIGMOD'14

- An intro to systematic data analysis
- For your course projects!

Data Analysis Pipeline



Step 1: Collect datasets

- Several public datasets are available
 - Data.gov
 - CDC/NCHS
 - NSF
 - DBLP
 - Arnetminer
 - Yelp academic data
 - Duke library

Step 2: Curate datasets

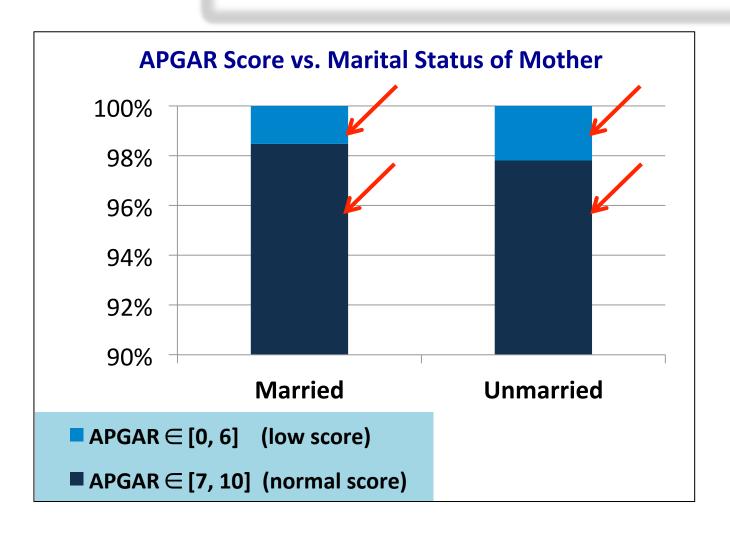
- Store from XML/TEXT to DBMS
- Figure out schema
- Clean
- Extract new features
 - www.cs.duke.edu/~sudeepa
 - Duke.edu
 - cs / stat / math
 - Edu
- Integrate
 - Store multiple datasets in the same database
 - DBLP, Arnetminer, NSF

Step 3: Process and ask questions

Fun step!

- Run several queries
- Plot graphs
- Ask questions

Example 1: Health of a newborn vs. marital status of the mother



Married mothers have healthier babies. Explain why.

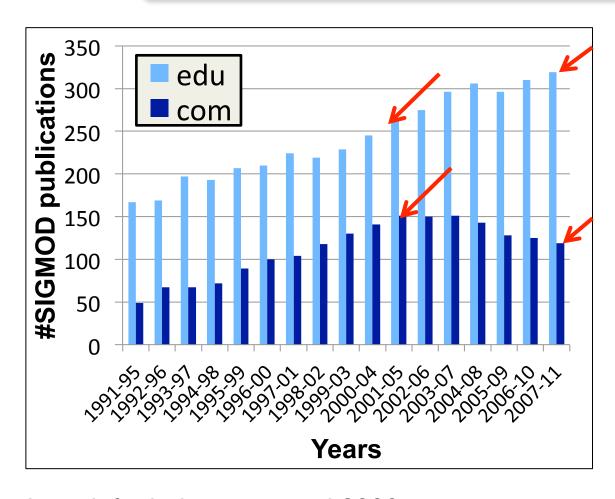
Example 2: Top-5 schools in CS with highest total NSF grant \$ from 1990

Rank	School	Total Award \$ from 1990
1	UIUC	1169.7 Million
2	UCSD	723.3 Million
3	CMU	472.9 Million
4	UT Austin	319.4 Million
5	MIT	292.7 Million

Rank (as grad school) on US News: UIUC - 5, CMU - 1 both about 60 primary faculty in CS

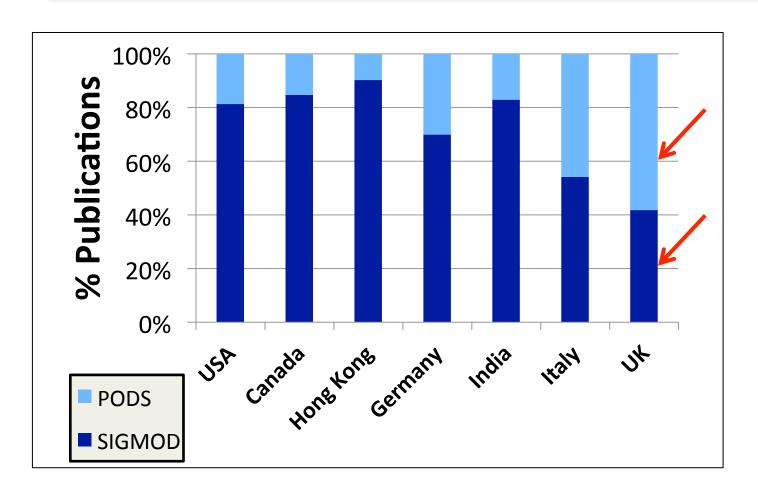
UIUC received much larger amount of awards than CMU. Explain why.

Example 3: #SIGMOD papers from academia and industry



A peak for industry around 2000. An increasing trend for academia. Explain why.

Example 4: #SIGMOD (systems) vs. #PODS (theory) papers from different countries



#SIGMOD papers ≤ #PODS papers in UK. Explain why.

Step 4: Data Analysis

- This is the challenging step
- How to answer these question
- Start with a clean formulation

Primary keys

<u>aid</u>	name	inst	dom
A1	LL	E.uk	uk
A2	DS	W.edu	edu
А3	MB	O.uk	uk

Author (A)

1. Relational databases

- multiple tables
- row = tuple, col = attribute
- primary/foreign keys

2. Aggregate queries A simpler SQL query

SELECT P.year, **count(distinct** P.pubid)

FROM A, AD, P

WHERE A.aid = AD.aid

AND AD.pubid = P.pubid

AND P.venue = 'SIGMOD'

....

GROUP BY P.year **ORDER BY** P.year

Foreign keys

<u>aid</u>	<u>pubid</u>
۸1	D1
A2	P1
-A1	PZ
А3	P2
A2	Р3
A3	Р3

pubid	year	venue
P1	2001	PODS
P2	2011	PODS
Р3	2001	SIGMOD

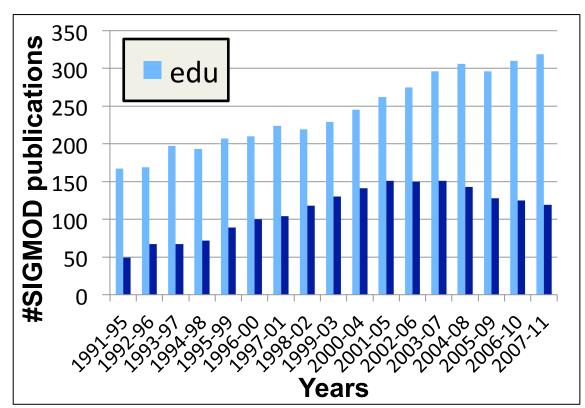
Publications (P)

Authored (AD)

Toy DBLP database

Database

101



Causality and Explanations: A Brief History

Aristotle (384-322 BC)

David Hume (1711-76)

Karl Pearson (1857-1936)

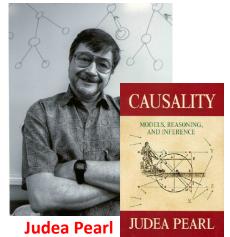
Carl Gustav Hempel (1905-97)

Donald Rubin (1943-)

Philosophy
Statistics

ΑI

Economics



(1936-)

Turing awardee: 2011

"It took another 25 years ... to formulate the randomized experiment – the only scientifically proven method of testing causal relations from data, and to this day, the one and only causal concept permitted in mainstream statistics. And that is roughly where things stand today."

Judea Pearl, 2000 (Causality: Models, Reasoning, and Inference)

Not possible with available data

Explanation by Intervention (our SIGMOD'14 paper)

Controlled Experiments ≡

Causation by Intervention (J. Pearl):

"A variable Y is a cause of Z if we can change Z by manipulating Y"

• i.e. $\Delta Y \Rightarrow \Delta Z$

Databases:

A set of input tuples is an explanation of one or more query answers if we can change the answers by "manipulating" these tuples

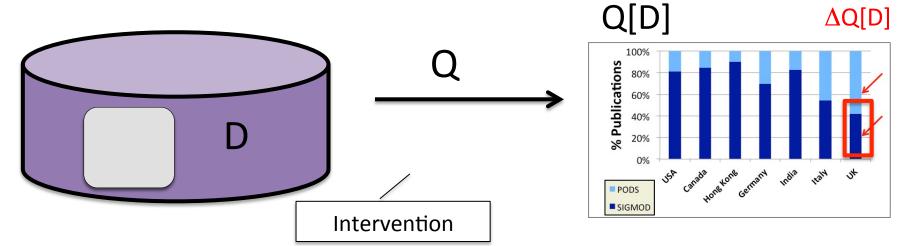
• i.e. $\Delta D \Rightarrow \Delta Q[D]$

What kinds of manipulation can we support?

$\Delta D \Rightarrow \Delta Q[D]$

Intervention in Databases

- Modification?
 - "E.F. Codd proposed Relational Model in 1970"
- Insertion?
 - "S. Roy wrote a SIGMOD paper in 1970"
- Restricted to Tuple Deletion



Explanation = a compact, high level description

Explanation Desiderata

- Define explanation φ
- Compute its intervention Δ_{ϕ}
- Find top-k explanations

- Succinctness
- Computability of intervention
- Formalize user question and scoring function
- Efficient exploration of explanation space and rank

Explanation Desiderata

- Define explanation φ
- Compute its intervention Δ_{ϕ}
- Find top-k explanations

Class of explanation

- Succinctness
- Computability of intervention
- Formalize user question and scoring function
- Efficient exploration of explanation space and rank

Succinctness

<u>aid</u>	name	inst	dom
A1	LL	E.uk	uk
A2	DS	W.edu	edu
А3	MB	O.uk	uk

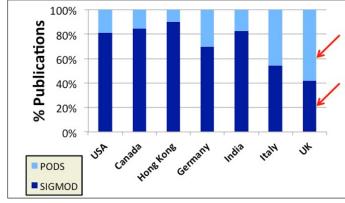
A3	MB	O.uk
		-

Author

<u>aid</u>	<u>pubid</u>
A1	P1
A2	P1
A1	P2
A3	P2
A2	Р3
А3	Р3

Authored

pubid	year	venue
P1	2001	PODS
P2	2011	PODS
Р3	2001	SIGMOD



Explanation = a subset of tuples

- **Arbitrary subset?**
 - Long explanations, may lack common properties
 - Hard to interpret, overfitting
 - Exponential search space in #tuples

Succinctness

<u>aid</u>	name	inst	dom
A1	님	E.uk	uk
A2	DS	W.edu	edu
А3	МВ	O.uk	uk

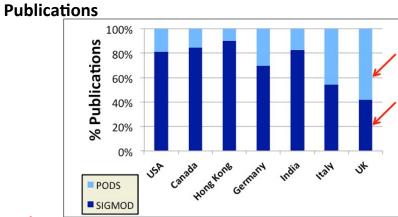
<u>aid</u>	<u>pubid</u>
A1	P1
A2	P1
A1	P2
А3	P2
A2	Р3
A3	P3

pubid	year	venue
P1	2001	PODS
P2	2011	PODS
Р3	2001	SIGMOD

Author

[inst = E.uk]
[name = LL] ∧ [year = 2001]
(multiple tables)

Authored



- Allow subsets that are specified by conjunctive predicates
 - Explanations are succinct (~ #attributes)
 - Polynomial search space in #tuples
 - Exponential in #attributes (can be controlled)

Explanation Desiderata

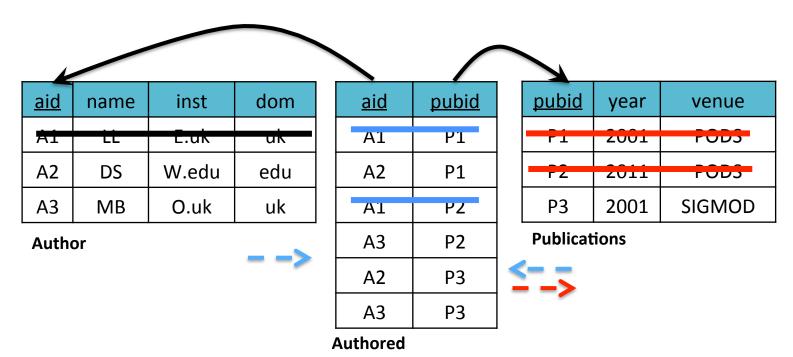
- Define explanation φ
- Compute its intervention Δ_{ϕ}
- Find top-k explanations

- Succinctness Conjunctive predicates
 - Computability of intervention
 Only satisfying a predicate is not sufficient
 - Formalize user question and scoring function
 - Efficient exploration of explanation space and rank

Intervention

= tuple deletion

Induced Tuple Deletion by Foreign Keys



- Standard Foreign Keys
 - Forward cascade delete
- Back-and-forth Foreign Keys
 - Forward cascade delete
 - Reverse cascade delete

Additional causal paths (semantic):

- Publication Author

"Causal dependency" between tuples

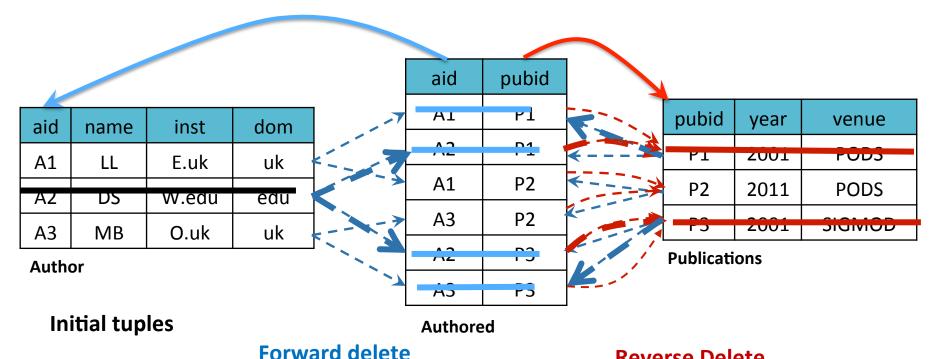
Intervention Δ_{d} for a given φ

- Intervention Δ_{ϕ} contains 7 tuples
- Recursion even for acyclic schema

Candidate explanation

φ : [name = 'DS']

- Not reachability
 - No explicit edges
 - Predicates can span multiple tables



Reverse Delete

Input:

Relations R_1 , ..., R_k (+ foreign keys) Attributes A_1 ,, A_k Fixed predicate Φ

(Theorem-proving step) Recursive Query to Compute Δ_{ϕ}

Output:

Interventions Δ_1 ,, Δ_k

No need to look at the details here

Rule 1:

$$\Delta_{i} = R_{i} - \Pi_{A_{i}} \sigma_{\neg \Phi} [R_{1} \bowtie ... \bowtie R_{k}]$$

(Forward delete)

$$\Delta_i = R_i - \Pi_{A_i} [(R_1 - \Delta_1) \bowtie ... \bowtie (R_k - \Delta_k)]$$

(Reverse delete)

$$\Delta_{i} = R_{i} \ltimes_{pk=fk} \Delta_{i}$$

$$R_i \longrightarrow R_i$$

- Query is not monotone in database
 - i.e., if $D \subseteq D'$, not necessarily $\Delta(D) \subseteq \Delta(D')$
 - Standard techniques (Datalog) do not directly work
- Query has a unique least fixpoint, poly-time convergence
- #Steps to converge depend on the schema (characterization)

Explanation Desiderata

- Define explanation φ
- Compute its intervention Δ_{ϕ}
- Find top-k explanations

- Succinctness Conjunctive predicates
- Computability of intervention
 Recursion for a given predicate
 - Formalize user question and scoring function Aggregate queries
 - Efficient exploration of explanation space and rank

User Question and Scoring Function

<u>aid</u>	name	inst	dom
A1	LL	E.uk	uk
A2	DS	W.edu	edu
А3	MB	O.uk	uk

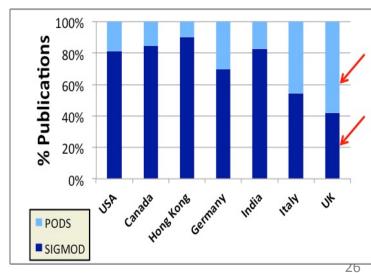
Author

<u>aid</u>	<u>pubid</u>
A1	P1
A2	P1
A1	P2
А3	P2
A2	Р3
А3	Р3

Authored

pubid	year	venue
P1	2001	PODS
P2	2011	PODS
Р3	2001	SIGMOD

Publications



User Question and Scoring Function

<u>aid</u>	name	inst	dom
A1	님	E.uk	uk
A2	DS	W.edu	edu
A3	MB	O.uk	uk

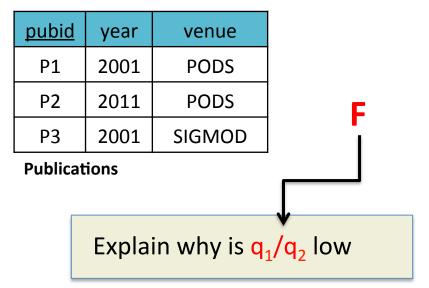
Aut	hor
-----	-----

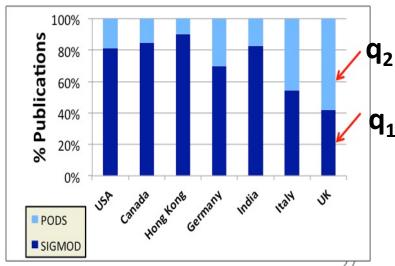
	-
<u>aid</u>	<u>pubid</u>
A1	P1
A2	P1
A1	P2
А3	P2
A2	Р3
A3	Р3
Authored	

q₁: count distinct 'SIGMOD' papers from 'uk' q₂: count distinct 'PODS' papers from 'uk'

User question: A numeric function **F** of simple aggregate queries

Score of
$$\phi = F(D - \Delta_{\phi})$$
 $\Delta_{\phi} = Intervention of \phi$
= $q_1(D - \Delta_{\phi}) / q_2(D - \Delta_{\phi})$





Explanation Desiderata

- Define explanation φ
- Compute its intervention Δ_{ϕ}
- Find top-k explanations

- Single explanation: recursion
- Large #explanations
- Don't run a FOR LOOP– use DATA CUBE
- Succinctness
 Conjunctive predicates
- Computability of intervention
 Recursion for a given predicate
- Formalize user question and scoring function

 Numeric function $F(q_1, q_2, ...)$
 - Efficient exploration of explanation space and rank

Data cube: Gray et al.'97

Current topic in 590.6

q₁: count distinct 'SIGMOD' papers from 'uk'

q₂: count distinct 'PODS' papers from 'uk'

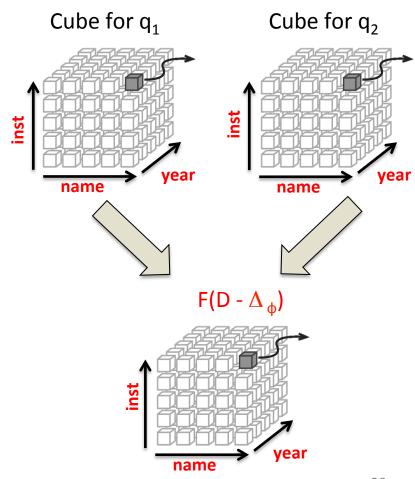
(Algorithm and optimization step) Optimization with OLAP Data Cube

Goal:

Compute for all
$$\phi$$

 $F(D - \Delta_{\phi}) = q_1(D - \Delta_{\phi})/q_2(D - \Delta_{\phi})$

- Fix a set of explanation attributes
 - A = {inst, name, year}
- Compute data cube on A for q₁, q₂
- Combine to compute final score and rank
- Computation mostly by DBMS
- Matches the semantic or a heuristic



Explanation Desiderata

- Define explanation φ
- Compute its intervention Δ_{ϕ}
- Find top-k explanations

- Succinctness Conjunctive predicates
- Computability of intervention
 Recursion for a given predicate
- Formalize user question and scoring function

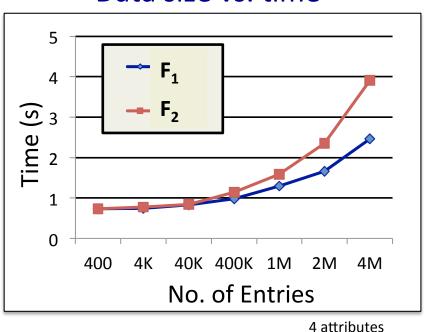
 Numeric function $F(q_1, q_2, ...)$
- Efficient exploration of explanation space and rank
 Data cube

 F_1 : Explain why: (q_1/q_2) low

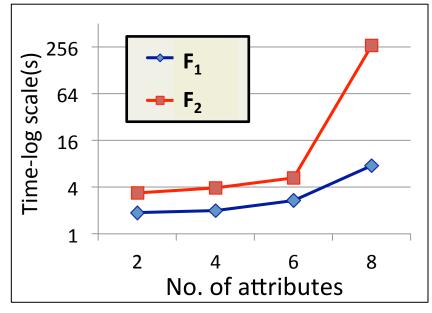
 F_2 : Explain why: $(q_1 * q_2) / (q_3 * q_4)$ low

Scalability of Data Cube

Data size vs. time



#Explanation attributes vs. time



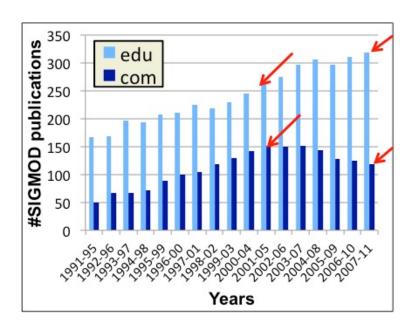
4M entries

Interactive speed (well..)

Slows down with #attr, #tuples, and query complexity

Natality Dataset 2010: (CDC/NCHS)

Single table with 233 attributes, ~4M entries, 2.89GB size



A peak for #sigmod papers from industry, while academia papers kept increasing. Explain why.

Qualitative Evaluation

	Explanations	
1	inst = ibm.com	
2	inst = bell-labs.com	
3	name = Rajeev Rastogi	
4	inst = ucla.edu	
5	name = Hamid Pirahesh	
6	inst = asu.edu	
7	name = Rakesh Agrawal	

- 1. Leading industrial labs and their senior researchers
- 2. New highly active academic database groups

For NSF data, some large "ACI" grants, and PIs who got > 500 M awards (in total from 1990)

Research Directions

- Several interesting directions
 - more complex explanations
 - uncertainty
 - performance
 - interactive exploration

—