Problem 1 (Stochastic Gradient Descent). In this problem we will try to analyze stochastic gradient descent algorithm for strongly convex functions.

Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is a \(L \)-smooth, \(\mu \)-strongly convex function with optimal point at \(x^* \). In particular
\[
\langle \nabla f(x), x - x^* \rangle \geq \frac{\mu}{2} \|x - x^*\|^2 + \frac{1}{2L} \|\nabla f(x)\|^2.
\]

We will try to optimize this function by running a stochastic gradient descent algorithm:

Algorithm 1 Stochastic Gradient Descent

for \(t = 0 \) to \(k - 1 \) do
 \(x^{(t+1)} = x^{(t)} - \eta_t (\nabla f(x^{(t)}) + \epsilon_t) \).
end for

In the algorithm, \(\eta_t \) is a step size that we will choose later. The vector \(\nabla f(x^{(t)}) + \epsilon_t \) is a stochastic gradient for \(f \) at \(x^{(t)} \), in particular, \(\epsilon_t \) is a random variable that only depends on \(x^{(t)} \), and for every \(x \)

\[
\mathbb{E}[\epsilon|x] = 0, \mathbb{E}[\|\epsilon\|^2_2|x] \leq \sigma^2.
\]

(a) (5 points) Suppose \(\nabla f(x) + \epsilon \) is a stochastic gradient for \(f \) at \(x \) that satisfies Equation (1). Show that
\[
\mathbb{E}[\|\nabla f(x) + \epsilon\|^2_2] = \|\nabla f(x)\|^2 + \sigma^2.
\]

(b) (5 points) Let \(r_t = \mathbb{E}[\|x^{(t)} - x^*\|^2_2] \), show that when \(\eta \leq \frac{1}{L} \),
\[
r_{t+1} \leq (1 - \eta \mu) r_t + \eta^2 \sigma^2.
\]

(Hint: Consider \(r_{t+1} = \mathbb{E}[\|(x^{(t)} - x^*) - \eta (\nabla f(x^{(t)}) + \epsilon_t)\|^2_2] \), and expand out the square.)

(c) (5 points) Show that when \(r_t \geq \frac{2\sigma^2}{\mu} \), we can choose \(\eta_t = \frac{1}{t} \), and get \(r_{t+1} \leq (1 - \frac{\mu}{2L}) r_t \).

(d) (10 points) Suppose \(r_{t_0} = \frac{4\sigma^2}{\mu^2 k} \) for some integer \(k \), and \(k \geq \frac{2L}{\mu} \). Show that we can choose \(\eta_t \) appropriately to ensure \(r_{t_0 + t} \leq \frac{4\sigma^2}{\mu^2 (k+1)} \) for all integer \(t > 0 \).

(Hint: The bound in (b) is quadratic in \(\eta \), optimize that to get a good choice of step size.)