Probabilistic Reasoning

Uncertainty is fundamental and inescapable in real(istic) problems.

- The world is not deterministic.
- Generalization is hard.
- Sensors and actuators are noisy.
- Plans fail.
- Models are imperfect.
- Learned models are especially imperfect.

Probabilistic reasoning: the mathematical tool that allows us to deal with the inescapable uncertainty inherent in perception and action.
Probabilities

Powerful tool for reasoning about uncertainty.

But, they’re tricky:

• Intuition often wrong or inconsistent.
• Difficult to get.

What do probabilities really mean?
Relative Frequencies

Defined over events.

\[P(A) : \text{probability random event falls in A, rather than Not A.} \]

Works well for dice and coin flips!
Relative Frequencies

But this feels limiting.

What is the probability that the Blue Devils will beat Syracuse on Saturday?

• Meaningful question to ask.
• Can’t count frequencies (except naively).
• Only really happens once.

In general, all events only happen once.
Probabilities and Beliefs

Suppose I flip a coin and hide outcome.
 • What is $P(\text{Heads})$?

This is a statement about a belief, not the world.
(the world is in exactly one state, with prob. 1)

Assigning truth values to probabilities is tricky - must reference speaker’s state of knowledge.

Frequentists: probabilities come from relative frequencies.
Subjectivists: probabilities are degrees of belief.
For Our Purposes

No two events are identical, or completely unique.

Use probabilities as beliefs, but allow data (relative frequencies) to influence these beliefs.

We use *Bayes’ Rule* to combine prior beliefs with new data.

Can prove that a person who holds a system of beliefs inconsistent with probability theory can be fooled.
To The Math

Probabilities talk about random variables:

- X, Y, Z, with domains $d(X), d(Y), d(Z)$.
- Domains may be discrete or continuous.
- $X = x$: RV X has taken value x.
- $P(x)$ is short for $P(X = x)$.
Examples

X: RV indicating winner of Duke vs. Syracuse game.

\[d(X) = \{ \text{Duke, Syracuse, tie} \}. \]

A probability is associated with each event in the domain:

- \(\text{P}(X = \text{Duke}) = 0.8 \)
- \(\text{P}(X = \text{Syracuse}) = 0.19 \)
- \(\text{P}(X = \text{tie}) = 0.01 \)

Note: probabilities over the entire event space must sum to 1.
Common use of probabilities: each event has \textit{numerical value}.

Example: 6 sided die.

What is the average die value?

\[
\frac{(1 + 2 + 3 + 4 + 5 + 6)}{6} = 3.5
\]

In general, given RV X and function $f(x)$:

\[
E[f(x)] = \sum_{x} P(x) f(x)
\]
Kolmogorov’s Axioms of Probability

- $0 \leq P(x) \leq 1$
- $P(\text{true}) = 1$, $P(\text{false}) = 0$
- $P(a \text{ or } b) = P(a) + P(b) - P(a \text{ and } b)$

Sufficient to completely specify probability theory for discrete variables.
Multiple Events

When several variables are involved, think about atomic events.
 • Complete assignment of all variables.
 • All possible events.
 • Mutually exclusive.

RVs: Raining, Cold (both binary):

<table>
<thead>
<tr>
<th>Raining</th>
<th>Cold</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>0.3</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>0.1</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>0.4</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: still adds up to 1.
Multiple Events

When several variables are involve, think about *atomic events*.

- Complete assignment of all variables.
- All possible events.
- Mutually exclusive.

RVs: Raining, Cold (both binary):

<table>
<thead>
<tr>
<th>Raining</th>
<th>Cold</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>0.3</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>0.1</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>0.4</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>0.2</td>
</tr>
</tbody>
</table>

joint distribution

\[P(\text{Raining, Cold}) \]

Note: *still adds up to 1.*
Joint Probability Distribution

Probabilities to all possible atomic events *(grows fast)*

<table>
<thead>
<tr>
<th>Raining</th>
<th>Cold</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>0.3</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>0.1</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>0.4</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Can define individual probabilities in terms of JPD:

\[P(Raining) = P(Raining, Cold) + P(Raining, not Cold) = 0.4. \]

\[
P(a) = \sum_{e_i \in e(a)} P(e_i)
\]
Independence

Critical property! But rare.

If A and B are independent:

• \(P(A \text{ and } B) = P(A)P(B) \)
• \(P(A \text{ or } B) = P(A) + P(B) - P(A)P(B) \)

Can break joint prob. table into separate tables.
Independence

Are *Raining* and *Cold* independent?

<table>
<thead>
<tr>
<th>Raining</th>
<th>Cold</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>0.3</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>0.1</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>0.4</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\[
P(\text{Raining}) = 0.4 \\
P(\text{Cold}) = 0.7
\]
Independence: Examples

Independence: two events don’t effect each other.

- Duke winning NCAA, Dem winning presidency.
- Two successive, fair, coin flips.
- It raining, and winning the lottery.
- Poker hand and date.

Often we have an intuition about independence, but *always verify*. Dependence does not mean causation!
Mutual Exclusion

Two events are mutually exclusive when:

- \(P(A \text{ or } B) = P(A) + P(B). \)
- \(P(A \text{ and } B) = 0. \)

This is different from independence.
Independence is Critical

To compute $P(A \text{ and } B)$ we need a joint probability.

- This grows very fast.
- Need to sum out the other variables.
- Might require lots of data.
- NOT a function of $P(A)$ and $P(B)$.

If A and B are independent, then you can use separate, smaller tables.

We can gain a lot of efficiency by leveraging independence and mutual exclusivity.
Conditional Probabilities

What if you have a joint probability, and you acquire new data?

My iPhone tells me that it's cold. What is the probability that it is raining?

Write this as:

- $P(\text{Raining} | \text{Cold})$

<table>
<thead>
<tr>
<th>Raining</th>
<th>Cold</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>0.3</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>0.1</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>0.4</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Conditional Probabilities

We can write:

\[P(a|b) = \frac{P(a \text{ and } b)}{P(b)} \]

This tells us the probability of \(a \) given only knowledge \(b \).

This is a probability w.r.t a state of knowledge.

- \(P(\text{Disease} \mid \text{Symptom}) \)
- \(P(\text{Raining} \mid \text{Cold}) \)
- \(P(\text{Duke win} \mid \text{injury}) \)
Conditional Probabilities

\[P(\text{Raining} \mid \text{Cold}) = \frac{P(\text{Raining and Cold})}{P(\text{Cold})} \]

\[\begin{align*}
... & P(\text{Cold}) = 0.7 \\
... & P(\text{Raining and Cold}) = 0.3
\end{align*} \]

\[P(\text{Raining} \mid \text{Cold}) \approx 0.43. \]

Note!

\[P(\text{Raining} \mid \text{Cold}) + P(\text{not Raining} \mid \text{Cold}) = 1! \]
Bayes’s Rule

Special piece of conditioning magic.

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

If we have conditional \(P(B|A) \) and we receive new data for B, we can compute new distribution for A. (Don’t need joint.)

As evidence comes in, revise belief.
Bayes Example

Suppose $P(\text{cold}) = 0.7$, $P(\text{headache}) = 0.6$.
$P(\text{headache} \mid \text{cold}) = 0.57$

What is $P(\text{cold} \mid \text{headache})$?

$$P(c|h) = \frac{P(h|c)P(c)}{P(h)}$$

$$P(c|h) = \frac{0.57 \times 0.7}{0.6} = 0.66$$

Not always symmetric!
Not always intuitive!
Modeling Joint Distributions

Gets large fast

- 2^n entries for n binary RVs.

Independence!

- A bit too strong.
- Rarely holds.

Conditional independence.

- Good compromise.
Conditional Independence

A and B are conditionally independence given C if:

• $P(A \mid B, C) = P(A \mid C)$
• $P(A, B \mid C) = P(A \mid C) \cdot P(B \mid C)$

(recall independence: $P(A, B) = P(A)P(B)$)

This means that, if we know C, we can treat A and B as independent.

A and B might not be independent otherwise!
Example

Consider 3 RVs:
- Temperature
- Humidity
- Season

Temperature and humidity are not independent.

But, they might be, given the season: *the season explains both*, and they become independent of each other.
Bayes Nets

A particular type of graphical model:
- A directed, acyclic graph.
- A node for each RV.

Given parents, each RV independent of non-descendants.
Bayes Net

Probability decomposes:

\[P(x_1, \ldots, x_n) = \prod_i P(x_i | \text{parents}(x_i)) \]

So for each node, store conditional probability table (CPT):

\[P(x_i | \text{parents}(x_i)) \]
Example

Suppose we know:

• The flu causes sinus inflammation.
• Allergies cause sinus inflammation.
• Sinus inflammation causes a runny nose.
• Sinus inflammation causes headaches.
Example

Flu

Allergy

Nose

Headache
Example

Joint: 32 (31) entries
Uses

Things you can do with a Bayes Net:

- Inference: given some variables, posterior?
 - (might be intractable: NP-hard)
- Learning (fill in CPTs)
- Structure Learning (fill in edges)

Generally:

- Often few parents.
- Inference cost often reasonable.
- Can include domain knowledge.
Bayes Nets

Potentially very compressed *but exact.*

- Requires careful construction!

VS

Approximate representation.

- Hope you’re not too wrong!

Many, many applications in all areas.
Continuous RVs

If you have a discrete RV, probability distribution is a table:

<table>
<thead>
<tr>
<th>Flu</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.6</td>
</tr>
<tr>
<td>False</td>
<td>0.4</td>
</tr>
</tbody>
</table>

What if you have a real-valued random variable?

- Temperature tomorrow
- Rainfall
- Number of votes in election
- Height
PDFs

Continuous probabilities described by probability density function $f(x)$.

PDF is about density, not probability.
- Non-negative.
- $\int_{x} f(x) = 1$ integrates to 1
- $f(x)$ might be greater than 1.
PDFs

Can’t ask $P(x = 0.0014245)$?

The probability of a single real-valued number is zero.

Instead we can ask for a range:

$$P(a \leq X \leq b) = \int_a^b f(x)dx$$
Distributions

Distributions usually specified by a PDF type or family.

Each family is a parametrized function describing the PDF.

Get a specific distribution by fixing the parameters.
Uniform Distribution

For example, uniform distribution over $[0, 0.5]$. Parameter: mean (none actually).
Gaussian (Normal)

A mean + an exponential drop-off, characterized by variance.

\[
f(x, \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
PDFs

When dealing with a real-valued variable, two steps:

- Specifying the family of distribution.
- Specifying the values of the parameters.

Conditioning on a discrete variable just means picking from a discrete number of parameter settings.

<table>
<thead>
<tr>
<th>μ_A</th>
<th>σ^2_A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.02</td>
<td>True</td>
</tr>
<tr>
<td>0.1</td>
<td>0.06</td>
<td>False</td>
</tr>
</tbody>
</table>
PDFs

Conditioning on real-valued RV:
• Parameters function of RV

Linear regression:
\[f(x) = w \cdot x + \epsilon \]
\[y \sim N(w \cdot x, \sigma^2) \]
Parametrized Forms

Many machine learning algorithms start with parametrized, generative models.

Find PDFs / CPTs such that probability they generated the data is maximized.

There are also non-parametric forms: describe the PDF directly from the data itself, not a function.