Lecture 18
Database Usability

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu

Fall 2015
What did we learn so far?
What will we learn?

DB Systems

DB Systems + Theory

DB Theory

Data Cube
Association rule mining

Provenance, Why-not,
Deletion propagation

Probabilistic,
Incomplete,
Inconsistent DB

Causality in DB, Stat, AI

Database Usability
Crowdsourcing

Systems for analytics
ML, Visualization, Large-scale
Today’s Reading

Main reading:
Jagadish-Chapman-Elkiss-Jayapandian-Li-Nandi-Yu
SIGMOD 2007
Making Database Systems Usable
(Student Presentation)

Additional reading:
Li-Chan-Maier
VLDB 2015
Query From Examples: An Iterative, Data-Driven Approach to Query Construction
(An overview in these slides)
Query By Examples (QFE)

- Help database users unfamiliar with SQL construct SQL queries
- User gets (D, R) pair as input
 - D = input database, R = desired result set
- Many such candidate Qs
 - Asks the user to distinguish them again with examples
 - Only requires that the user is able to determine whether a candidate is the result of her intended query on some database D'
- Objective: minimize the effort needed by the user
EXAMPLE 1.1. To illustrate our QFE approach, suppose that a user needs help to determine her target query Q for the following database-result pair (D, R), where D consists of a single table.

Employee

<table>
<thead>
<tr>
<th>Eid</th>
<th>name</th>
<th>gender</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>F</td>
<td>Sales</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>M</td>
<td>IT</td>
<td>4200</td>
</tr>
<tr>
<td>3</td>
<td>Celina</td>
<td>F</td>
<td>Service</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>Darren</td>
<td>M</td>
<td>IT</td>
<td>5000</td>
</tr>
</tbody>
</table>

Database D

For simplicity, assume that there is a set of three candidate queries, $QC = \{Q_1, Q_2, Q_3\}$, for Q, where each $Q_i = \pi_{\text{name}}(\sigma_{p_i}(\text{Employee}))$, with $p_1 = \text{`gender = "M"'}, p_2 = \text{`salary > 4000'}, and $p_3 = \text{`dept = "IT"'}$. To help identify the user's target query among these three candidates, our approach will first present to the user a modified database D_1 and two possible query results, R_1 and R_2, on D_1:

Employee

<table>
<thead>
<tr>
<th>Eid</th>
<th>name</th>
<th>gender</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>F</td>
<td>Sales</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>M</td>
<td>IT</td>
<td>4200</td>
</tr>
<tr>
<td>3</td>
<td>Celina</td>
<td>F</td>
<td>Service</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>Darren</td>
<td>M</td>
<td>IT</td>
<td>5000</td>
</tr>
</tbody>
</table>

Employee

<table>
<thead>
<tr>
<th>Eid</th>
<th>name</th>
<th>gender</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>F</td>
<td>Sales</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>M</td>
<td>IT</td>
<td>4200</td>
</tr>
<tr>
<td>3</td>
<td>Celina</td>
<td>F</td>
<td>Service</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>Darren</td>
<td>M</td>
<td>IT</td>
<td>5000</td>
</tr>
</tbody>
</table>

Database D_1

The modified database D_1 serves to partition QC into multiple subsets. In this example, QC is partitioned into two subsets with the queries in $\{Q_1, Q_3\}$ producing the same result R_1 on D_1 and the query in $\{Q_2\}$ producing the result R_2. The user is then prompted to provide feedback on which of R_1 and R_2 is the result of her target query Q on D_1. If the user chooses R_2, then we conclude that the target query is Q_2. Otherwise, $Q \in \{Q_1, Q_3\}$ and the feedback process will iterate another round and present the user with another modified database D_2 and two possible results, R_3 and R_4 on D_2:

Employee

<table>
<thead>
<tr>
<th>Eid</th>
<th>name</th>
<th>gender</th>
<th>dept</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>F</td>
<td>Sales</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>M</td>
<td>IT</td>
<td>4200</td>
</tr>
<tr>
<td>3</td>
<td>Celina</td>
<td>F</td>
<td>Service</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>Darren</td>
<td>M</td>
<td>IT</td>
<td>5000</td>
</tr>
</tbody>
</table>

Database D_2

If the user feedback that R_3 is the result of Q on D_2, then we conclude that Q is Q_1; otherwise, we conclude that Q is Q_3. For this example, the target query is determined with at most two rounds of user feedback, each of which involves a single change in the database.
QFE : Challenges

1. How to generate candidate target queries given an initial database-result pair
 - Not the focus of this paper
 - Tran-Chan-Parthasarathy: “Query by Output” (SIGMOD 2009)
 - Zhang-Elmeleegy-Procopiuc-Srivastava: “Reverse engineering complex join queries” (SIGMOD 2013)

2. How to optimize the user-feedback interactions to minimize the user’s effort to identify the desired query
 - This paper
 - Select-Project-Join queries
Architecture and Execution

Figure 1: Overall Architecture of QFE
The Query Generator module

- takes \((D,R)\) as input
- generates a set of candidate SQL queries \(QC = \{Q_1, \ldots, Q_n\}\) for \((D,R)\)
 - i.e., \(Q_i(D) = R\) for each \(Q_i \in QC\)
Overview: Query Generator

• Tree-based classifier
 – Positive tuples: contribute to query result
 – Negative tuples: do not contribute

• A binary decision tree is constructed top-down
 – If a leaf-node is not good, split it
 – Goodness condition: entropy, classification error, Gini index
 – Split with some condition: e.g. t.A <= v
The Database Generator module
• takes \((D,R)\) and \(QC' \subseteq QC\) as input
• generates a new database \(D'\)
• \(D'\) partitions \(QC'\) based on their results into \(k\) smaller subsets
 • query in the same partition produces the same result
The Result Feedback module

- takes the new database D' and the k results (from k partitions)
- User identifies one partition x as correct
- Repeat with this partition until the chosen partition has only one query

- To help reduce user’s effort, only the difference of D' with the original database D is presented.
Cost Model

- Used by the “Database Generator” module to select a “good” modified database D’ to partition the query candidates QC into QC₁, ..., QCₖ

- To minimize the #iterations, each partition should ideally be balanced
 - Remember O(n log n)-time divide and conquer algorithms

- To reduce user’s effort
 - D’ should be close to D
 - New results R₁,...,Rₖ should be close to original result R
Balance Score

• Candidate query groups $C = \{QC_1, ..., QC_k\}$

• The balance score of D' is σ/k

 $\sigma = \text{standard deviation of } |QC_1|, ..., |QC_k|$

• Smaller balance score

 $= \text{many subsets of about the same size}$
Estimating User’s Effort

• Minimize distances between (databases D and D’) or (results R_1,..R_k and R)

• Cost components for identifying differences:

1. Current cost
 A. Databases D and D’
 Edit Distance between D and D’ $\text{minEdit}(D, D')$
 + Cost proportional to #modified relations

 B. Results R_i and R for i = 1..k
 Sum of edit distances between R_i and R

2. Residual cost
 A. An estimate of the cost for future rounds
 B. Depends on user’s feedback
 C. Conservative estimate of #iterations x current cost in each iteration
 Two partitions
 Largest group is chosen

• Large search space – difficult to find D with min cost(D’)

Fall 2015
Duke CS - CompSci 590.6
Tuple Class: Partitioning Attribute Domain

• Need to find equivalent query classes
• Given a set of queries QC
 – Partition the domain of an attribute A into minimum collection of disjoint subsets $P_{QC}(A)$
 – such that for every subset I and for each selection predicate p on A in QC
 – either every value in I satisfies p or no value in I satisfies p

Example 5.1. Consider a relation $T(A, B, C)$ where both A and B have numeric domains; and a set of queries $QC = \{Q_1, Q_2\}$, where $Q_1 = \sigma_{A<50, B>60}(T)$ and $Q_2 = \sigma_{A \in (40,80) \land B \leq 20}(T)$. We have $P_{QC}(A) = \{[-\infty, 40], (40, 50], (50, 80], (80, \infty]\}$, $P_{QC}(B) = \{[-\infty, 20], (20, 60], (60, \infty]\}$, and $P_{QC}(C) = \{[-\infty, \infty]\}$. \qed
Tuple Class: Definition

Given a relation $T(A_1, \cdots, A_n)$ and a set of queries QC, a tuple class for T relative to QC is defined as a tuple of subsets (I_1, \cdots, I_n) where each $I_j \in \mathcal{P}_{QC}(A_j)$. We say that a tuple $t \in T$ belongs to a tuple class $TC = (I_1, \cdots, I_n)$, denoted by $t \in TC$, if $t.A_j \in I_j$ for each $j \in [1, n]$.

Example 5.3. Continuing with Example 5.1, $TC = ((40, 50], [-\infty, 20], [-\infty, \infty])$ is an example of a tuple class for T, and $(48, 3, 25) \in TC$.

- A single tuple modification can be represented by a pair (s, d) of tuple classes where a tuple t in s is modified to a tuple t' in d
 - s and d should not be equal
- Possible modifications by a set of (STC, DTC) pairs
 - $STC =$ Source Tuple Class
 - $DTC =$ Destination Tuple Class
Tuple class: observation

• Given D, a set of queries QC
• If D’ is generated by modifying n distinct tuples
• D’ can partition QC into at most 4^n equivalent query subsets

• Intuition: for every tuple being changed from t to t’ and for each query Q in QC
 – both t, t’ match Q
 – neither match Q
 – t matches Q, t’ does not
 – t’ matches Q, t does not

• Extend the notions of cost/balance/minedit to (STC, DTC) pairs
Heuristic

• Search in a smaller domain of “tuple-class pairs”
• Input: a set of candidate queries QC
• Output: A modified database D' with a small value of $\text{cost}(D')$

• Step 1: Generate a skyline (?) \mathcal{SP} of $(\mathcal{STC}, \mathcal{DTC})$ pairs (s, d) w.r.t. balance(..) and minEdit(..)
• Step 2: Select A “good” subset $S_{\text{OPT}} \subseteq \mathcal{SP}$
• Generate D' from D and S_{OPT}
Summary

• Database usability is as important as capability
 – help user formulate query with examples
 – minimize user interaction and time

• Next two lectures: crowd sourcing
 – “wisdom of crowd” is used to implement database operators