CompSci 590.6
Understanding Data: Theory and Applications

Lecture 3
Data Cube
Implementation and Selective Materialization

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu
Project Update

• Instructions in a day or two
• SQL Server is being set up on a new machine
 – needed for Data Cube
• Discussion on project ideas at the end of the class
Demo of Data Cube
(SQL Server)

• In class
• With Natality Data
• Remove “order by”
• Remove “with cube”
 – Comparable time
• Marital Status, Smoking
 – 1: Yes 2: No
• Education
 – Integer value: #years
 – 1:0-8, 2: 9-11, 3: 12, 4:13-15, 5: >= 16
• Mother’s Age
 – Integer value: age
Today’s Paper

Harinarayan-Rajaraman-Ullman
Implementing data cubes efficiently
SIGMOD 1996

(1730 citation on Google Scholar)

Who are the authors?
Concepts

• **Decision Support Systems (DSS)**
 – used in businesses
 – get data from standard (operational) databases
 – compute aggregates to identify trends

• **Data Warehouses**
 – stores such historical information
 – large and grow over time
 – can slow down DSS – limits productivity
 – More about data warehouses in Lecture 4
This paper: Materialize Selected Views

• “Materialize” Views
 – pre-compute and store query answers
 – query answer can be obtained quickly
 • no computation needed at runtime
 – either, frequently asked queries
 – or, infrequently asked queries if that help to answer a number of other queries

• Challenge: how to select a good set of queries to materialize
Example: TPC-D Benchmark

• Models a business warehouse
• Three dimensions:
 – part (p), supplier (s), customer (c)
• A cell (p, s, c) represents the sale price (SP)
 – of part p that was bought from supplier s and sold to customer c
• Add “ALL” to denote consolidated sales
 – e.g. (p, ALL, c)
 – total sales of a given part p to a given customer c (across all suppliers)
 – similarly, (p, ALL, ALL): total sales of a given part p
Lattice Structure of Data Cube on p, s, c

- Q1 \leq Q2 if and only if Q1 can be answered using only the results of Q2
- (p) \leq (c)? - No
- (c) \leq (p)? - No
- (p) \leq (pc)? – Yes
- \leq Partial order
 - ancestor
 - descendent
 - next
- We need a top-view, on which every view is dependent

Note: inverted lattice structure compared to Lecture 2
Option 1: Materialize everything?

- All views of the cube
- Here: about 19 M rows
- (+) Best query response time
 - no computation at runtime
- (-) Need to store every single cell of cube
 - too much space
 - too much time to pre-compute
 - impacts indexing
Option 2: Materialize nothing?

- Go to raw data and compute query on request
- (-) Bad query response time
- (+) No extra space
- (+) Scalable for large data
Option 3: Materialize something?

- Approach in this paper

- Dependent cells
 - can be computed from other cells
 - e.g. \((p, \text{ALL}, c) = \Sigma_s (p, s, c)\)
 - 70% cells in the adjacent cube are dependent
 - no ALL – not dependent (psc)

- Space limitations

- Carefully pick the right cells to materialize
Assumptions on cost

• The cost of answering a query is proportional to the number of row examined

• e.g. : Group by parts (p)
 – From materialized (p): 0.2 M
 – From materialized (pc): 6 M

• Assumes no index on views
 – Even with selection condn, say (p=‘widget’), same cost
 – or half cost on average
Example: Comparing choices

(psc) has to be materialized to avoid visiting raw data
Example: Comparing choices

Do not materialize (pc) or (sc)

about same cost from (psc)

in general – compute from least-cost ancestor
Example: Comparing choices

Materialize everything
- space = 19.11 M
- time ≈ 19.11 M

Materialize selectively
- space = 7.11 M
- time ≈ 19.11 M
- > 60% savings in space
Hierarchies

• Some dimensions (attributes) are organized in hierarchies
• Should be considered while deciding materialization of views

Hierarchy of time attributes

Day

Month

Year

Week

Month -> Year
(Jan’15) -> 2015

Roll-up

Drill-down

Functional dependencies
Composite Lattices for Multiple, Hierarchical Dimensions

• Two types of query dependencies

1. Caused by the interaction of different dimensions
 – e.g., p, s, c
2. Caused by attribute hierarchies within a dimension

• n dimensions
• suppose arbitrary group by allowed for any/no member of the hierarchy of each dimension
• in each \((a_1, \ldots, a_n)\) in the view, each \(a_i\) is a point in the hierarchy
Combining Two Hierarchical Dimensions

- lattice structure without hierarchy
Combining Two Hierarchical Dimensions

part:
 size(z), type(t)

None

customer:
 nation(n)

None

Direct Product Lattice
Combining Two Hierarchical Dimensions

part:
 size(z), type(t)

Direct Product Lattice

customer:
nation(n)
 c
 n
 none

none

p

z

t

none

np

n

t

nz

nt

cz

cp

c

ct

none

z

t

none
Combining Two Hierarchical Dimensions

part:
size(z), type(t)

none

Direct Product Lattice

customer:
nation(n)

c
n
none

none
Advantages of Lattice Framework

• To reason with dimension hierarchy
 – Not always a “hypercube”

• Can model the common queries better
 – Users typically go along the edges
 – Drill-down (going up) and Roll-up (going down) along a path

• The order of materializing views
 – Suppose a set S of views has to be materialized
 – We do not need to go to raw data to materialize every view
 – Topological order sort in S
 – Materialize from the smallest ancestor
Optimization Problem

1. Minimize the time taken to evaluate views in an arbitrary lattice
 - not necessarily full hypercube lattice

2. Constrained to materialize a fixed number of views
 - regardless of the space they use
NP-Hardness

- Reduction from k-cover
 - Sets: \{S_1, \ldots, S_m\} on n elements \{x_1, \ldots, x_n\}
 - Include at most k sets to cover as many elements as possible

- The lattice structure for the optimization problem is shown in the figure
 - Bound on \#views = k (apart from top-view)
 - Top-view costs = M > 1 (covers all views)
 - Each set S_i costs = 1 (covers itself and its elements)
 - Each element x_i costs = 1 (covers itself)
NP-Hardness

• Reduction from k-cover (contd.)
 – WLOG always set-views S_i are chosen. Why?
 – WLOG exactly k set-views are chosen. Why?
 – Suppose a set of sets O, $|O| = k$, covers N elements
 – Gives a solution for views with total cost $=\$
 • M (for top-view)
 • $+ k + (m-k)M$ (for sets views S_i)
 • $+ N + (n-N)M$ (for element views x_i)
 – $= k + mM + nM - (M-1)N$
 – Also vice versa
 – i.e. N is maximized if the cost is minimized
Greedy Algorithm

- **Input:** Data cube lattice
 - space cost $C(v)$ for view v
 - limit k on #views (in addition to the top view)

- **Suppose we have selected a set S, $|S| < k + 1$$/**
 - top view is in S

- **The benefit of v w.r.t. S, $B(v, S)$ is computed as follows**
 - for all $w \leq v$,
 - Let u be the view with least cost in S such that $w \leq u$ (at least top-view)
 - If $C(v) < C(u)$, $B_w = C(v) - C(u)$, else 0

- $B(v, S) = \sum_{w \leq v} B_w$
 - Includes itself

- **Choose v not in S yet with max $B(v, S)$ k times**
 - Here $k = 2$ (apart from top-view)
 - $S = \{a\}$ initially

- Here optimal, but not always
When Greedy is not optimal

- **K = 2**
- **Greedy:** \{c, b\} or \{c, d\}
 - C: 101 * 41 = 4141, b or d: 100 * 41 = 4100
 - b or d: 100 * 21 = 2100
 - Total benefit = 6241
- **Optimal:** \{b, d\}
 - Total benefit = 8200
- **Ratio**
 - \(6241/8200 = \text{about } \frac{3}{4}\)
- **As bad as it can get for } K = 2**
- **Actual ratio** \(1 - (k-1/k)^k \geq 1 - 1/e\)
- **Extension to space limit**
 - Benefit per unit space
 - Some small view can exclude large views
 - Still can get a bound

Figure 9: A lattice where the greedy algorithm does poorly
Figure 11: Time and Space for the greedy view selection for the TPC-D-based example.
Project ideas on Cube

• in class