CompSci 590.6

Understanding Data: Theory and Applications

Lecture 4

Data Warehousing and Iceberg Queries

Instructor: Sudeepa Roy
Email: sudeepa@cs.duke.edu
Today’s Paper(s)

Chaudhuri-Dayal
An Overview of Data Warehousing and OLAP Technology
SIGMOD Record 1997

Book: Database Management Systems
Ramakrishnan-Gehrke
Chapter#25
Data Warehousing and Decision Support

Fang-Shivakumar- Garcia-Molina -Motwani-Ullman
Computing Iceberg Queries Efficiently
VLDB 1998
Data Warehousing (DW)

• A collection of decision support technologies
• To enable people in industry/organizations to make better decisions
 – Supports OLAP (On-Line Analytical Processing)
• Applications in
 – Manufacturing
 – Retail
 – Finance
 – Transportation
 – Healthcare
 – ...

• Typically maintained separately from “Operational Databases”
 – Operational Databases support OLTP (On-Line Transaction Processing)
<table>
<thead>
<tr>
<th>OLTP</th>
<th>Data Warehousing/OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications:</td>
<td>Applications:</td>
</tr>
<tr>
<td>Order entry, sales update, banking transactions</td>
<td>Decision support in industry/organization</td>
</tr>
<tr>
<td>Detailed, up-to-date data</td>
<td>Summarized, historical data (from multiple operational db, grows over time)</td>
</tr>
<tr>
<td>Structured, repetitive, short tasks</td>
<td>Query intensive, ad hoc, complex queries</td>
</tr>
<tr>
<td>Each transaction reads/updates only a few tuples (tens of)</td>
<td>Each query can accesses many records, and perform many joins, scans, aggregates</td>
</tr>
<tr>
<td>Important:</td>
<td>Important:</td>
</tr>
<tr>
<td>Consistency, recoverability, Maximizing transaction throughput</td>
<td>Query throughput Response times</td>
</tr>
</tbody>
</table>
Terminology

• Multidimensional Data
 – Some dimensions are hierarchical (day-month-year)

• Operations
 – Roll-ups, Drill-down
 – Pivot (re-orient view) – attr value becomes row/col header
 – Slice-and-dice (selection and projection) – reduces dimensionality

• Data marts
 – subsets of data on selected subjects
 – e.g. Marketing data mart can include customer, product, sales
 – Department-focused, no enterprise-wide consensus needed
 – But may lead to complex integration problems in the long run

• Relational OLAP (ROLAP)
 – On top of standard relational DBMS
 – Data is stored in relational DBMS
 – Supports extensions to SQL to access multi-dimn. data

• Multidimensional OLAP (MOLAP)
 – Directly stores multidimensional data in special data structures (e.g. arrays)
DW Architecture

- Extract data from multiple operational DB and external sources
- Clean/integrate/transform/store
- refresh periodically
 - update base and derived data
 - admin decides when and how
- Main DW and several data marts (possibly)
- Managed by one or more servers and front end tools
- Additional meta data and monitoring/admin tools
ROLAP: Star Schema

- To reflect multi-dimensional views of data
- Single fact table
- Single table for every dimension
- Each tuple in the fact table consists of
 - pointers (foreign key) to each of the dimensions (multi-dimensional coordinates)
 - numeric value for those coordinates
- Each dimension table contains attributes of that dimension

No support for attribute hierarchies
ROLAP: Snowflake Schema

- Refines star-schema
- Dimensional hierarchy is explicitly represented

 (+) Dimension tables easier to maintain
 - suppose the “category description” is being changed

 (-) Denormalized structure may be easier to browse

- Fact Constellations
 - Multiple fact tables share some dimensional tables
 - e.g. Projected and Actual Expenses may share many dimensions

Figure 4. A Snowflake Schema.
Issues to consider

- Index (Lecture 5: Sudeepa)
- Materialization
- Un-nest Queries
- Parallel processing
- Storing meta data
Computing Iceberg Queries Efficiently

Acknowledgement:
Some slides have been taken from Erik Gribkoff’s paper presentation, 590q, Winter’14, U. Washington
What is an iceberg query?

SELECT target1, target2, ..., targetk, count(rest)
FROM R
GROUP BY target1, target2, ..., targetk
HAVING count(rest) >= T

- Computes an aggregate over attributes
- Only output aggregate values above a certain threshold
- Usually, the number of above-threshold results is very small
- The “tip of the iceberg”

- The answer is <a, e, 3> for k = 2, T = 3
Why should we care about Iceberg Queries?

• Many queries in data mining are fundamentally Iceberg queries

• e.g. Market Basket Data Analysis
 – which items are bought together “frequently”

• e.g. find similar documents on web
 – If the number of overlapping chunks $\geq T$

• e.g. Enterprise sales analysis
 – Find the parts-regions pairs where the total sales amount is $\geq 1M$
 – So that the company can order more such parts in those regions
Naïve Approaches

1. Maintain an array of counters in main memory
 – one for each target
 – answer the query in a single pass
 – (-) not always possible – R may not fit in memory

2. Sort R on disk
 – many passes needed to sort

3. Materialization
 – \{a, b, c\} => [a, b], [a, c], [b, c]
 – A good algorithm uses *virtual* R

- Solutions are “over-kill”
 – do the same amount of work irrespective of the query output size
Iceberg Query Example

LinEltem - <partKey, price, numsales, region>

CREATE VIEW PopularItems as
 SELECT partKey, region, SUM(numSales * price)
 FROM LinEltem
 GROUP BY partKey, region
 HAVING SUM(numSales * price) >= $1,000,000
Iceberg Query Example

• Avoiding (near) replicated documents in search engine queries
• Consider table DocSign <doc, sig>
 – doc is the document id
 – sig is a signature of a chunk

```sql
SELECT D1.doc, D2.doc, COUNT(D1.sig)
FROM DocSign D1, DocSign D2
WHERE D1.sig = D2.sig
  AND D1.doc <> D2.doc
GROUP BY D1.doc, D2.doc
HAVING COUNT(D1.sig) >= T2
```
Document Overlap
– Previous Approach

• Broeder et al’97
• Consider table $DocSign \langle doc, sig \rangle$
 – doc is the document id
 – sig is a signature of a chunk

• Sort $\langle di, sk \rangle$ by sk – tuples for a chunk are contiguous
• for each pair $\langle d_i, s_k \rangle$ and $\langle d_j, s_k \rangle$, add $\langle d_i, d_j \rangle$ to $SignSign$
• sort $SignSign$ – tuples for a doc are contiguous
• scan $SignSign$, count, and check against $T2$
• Case study in the paper:
 – DocSign of size 500MB
 – SignSign size of 40GB
 – although output can only be 1MB!
Terminology

• $R = \text{a materialized relation with } \langle \text{target, rest} \rangle \text{ pairs}$
 – 1 target, 1 rest, for simplicity

• $N = |R|$

• $V = \text{ordered list of all targets in } R$

• $V[r]$ is the r-th most frequent target in R

• $n = |V|$

• $\text{Freq}(r) = \text{frequency of } V[r] \text{ in } R$

Figure 1: A graphical view of terminology.
Terminology

- T = threshold
- $r_t = \max \{ r \mid \text{Freq}(r) \geq T \}$
- H = answer to iceberg query, $\{V[1], V[2], \ldots, V[r_t]\}$

- "Heavy targets" – values in H
- The algorithms calculate a "candidate set"

$F = \text{potentially heavy targets}$

- Goal: $F = H$
False positives and false negatives

• If $F - H$ is non-empty, the algorithm reports false positives
 – If F is small, we can eliminate false positives by counting the frequency of targets in F.
 – As $|F| \to n$, this efficiency deteriorates
 – called $\text{COUNT}(F)$

• If $H - F$ is non-empty, the algorithm generates false negatives
 – Much harder to “regain” in post-processing
 – as hard as original query
 – unless R is highly skewed, i.e. most tuples in R have value from a small set $H' = F \cap H$
 – then scan R, eliminate tuples with values in H'
 – run iceberg query to obtain heavy hitters not in H'

• **GOAL:**
 – Algorithms should have NO False Negatives
 – Algorithms should have AS FEW False Positives AS POSSIBLE
Sampling Algorithm (SCALED-SAMPLING)

• Take a random sample of size s from R

• If the
 – count of a target in the sample
 – scaled by $|R|/|s|$
 – exceeds T
 – put the target in F

• Pros:
 – Simple
 – Efficient

• Cons:
 – False-positives
 – False-negatives
Coarse-counting algorithm (COARSE-COUNT)

- (not this paper)
- Array $A[1...m], Bitmap[1..m]$ ($m << n = \#targets$)
- Hash function h: target values $\rightarrow [1...m]$

Perform a linear “hashing” scan of R:
 - For each tuple in R with target v:
 - $A[h(v)] += 1$
- Set Bitmap $[i] = 1$ if bucket i is heavy (i.e., $A[i] >= T$)
- Reclaim memory allocated to A
- “Candidate selection” scan of R:
 - For each target v s.t. $Bitmap[h(v)] == 1$, add v to F
- Remove false-positives
- Pros:
 - No false-negatives
- Cons:
 - but light elements may be hashed to heavy buckets
 - multiple light elements/ some light some heavy / all heavy
 - F can be large
This paper: Hybrid techniques

- DEFER-COUNT
- MULTI-LEVEL
- MULTI-STAGE

- Combines sampling, multiple hash functions
DEFER-COUNT

Idea:

• Use a sampling scan to find initial F
 – small sample s << n (exceeds threshold)
 – add f < s most frequent targets to F (higher prob of being heavy)

• Run hashing-scan exactly the same as COARSE-COUNT, except:
 – Don’t increment counters for targets already in F
 – add more targets to F by candidate-selection
 – Remove False Positives from F
 – fewer false positives

Example:

• p, q are heavy targets - identified in sampling phase
 – explicitly maintained in memory, so not counted in buckets

• a, b are light targets
 – hashed values <= T, not counted
DEFER-COUNT

• Pros:
 – Fewer heavy buckets => fewer false positives

• Cons:
 – Memory split between samples and buckets
 – Maintains explicit targets in memory
 – Have to decide how to choose s and f values
 – If initial F is large, costly to look up each target during hashing scan
MULTI-LEVEL

Sampling Scan:
• Instead of creating an initial F after the sampling scan (s targets)
 – if A[i] >= Ts/n, mark bucket as potentially heavy
 – Allocate m_2 auxiliary buckets
• Reset A counters to 0

Hashing Scan
• Increment A[h(v)] if NOT potentially heavy
• Otherwise, hash again into m_2 auxiliary buckets

Then count(F)
MULTI-LEVEL

• **Pros:**
 – does not explicitly maintain the list of potentially heavy targets
 • only maintains counts
 • helps when size of targets is large

• **Cons:**
 – Still splits memory between primary and auxiliary buckets – how to obtain good split (empirically)
 – Rehashing may be expensive
MULTI-STAGE

• Instead of auxiliary buckets, allocate a common pool of auxiliary buckets B[1,2,...]
 – 50% chance that heavy elements p, q will fall into the same bucket
 – Then no false positives

• Pros:
 – Makes more efficient use of memory than multi-level
 – fewer false positives (over MULTI-LEVEL)

• Cons:
 – Still splits memory
Optimizing HYBRID with multi-buckets

- Still many light elements may fall into buckets with
 - one or more heavy elements (sampling helps, but not always)
 - many light elements (HYBRID cannot avoid)

- Uniscan
- Multiscan
- Multiscan-shared
- Multiscan-shared2

Described for DEFER-COUNT
- Still do sampling – and store in F – not counted in hashing scan
- Still do COUNT(F) at the end
Single-scan Defer-Count (UNISCAN)

• Idea: Reduce false positives by using additional hash functions.

• Same as defer-count
• but keep k hash functions and bitmaps (smaller space)
• After incrementing counters, add target v to F iff for all k, \(\text{BITMAP}_k[h_k(v)] = 1 \)
 – one scan over data

• Choosing k for a given amount of memory is challenging:
 – As k increases, we have many hash tables => fewer false positives
 – As k increases, we also have smaller hash tables => more false positives
MULTISCAN and MULTISCAN-SHARED

- **Idea:** One hash function per scan
 - then store BITMAP_k on disk
 - then perform next scan.
- read previous $k-1$ bitmaps from disk to reduce false positives
- **MULTISCAN-SHARED:** Increment for target only if previous bitmaps say 1
 - e is not counted in the second pass
- **MULTISCAN-SHARED2**
 - keep hashmaps only from the last q passes
 - fewer bits set to 1, more pruning

<table>
<thead>
<tr>
<th>Hashing Scan 1</th>
<th>A:</th>
<th>10</th>
<th>40</th>
<th>40</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITMAP$_1$:</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hashing Scan 2</td>
<td>A:</td>
<td>40</td>
<td>30</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>BITMAP$_2$:</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) MULTISCAN

<table>
<thead>
<tr>
<th>Hashing Scan 1</th>
<th>A:</th>
<th>10</th>
<th>40</th>
<th>40</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITMAP$_1$:</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hashing Scan 2</td>
<td>A:</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>BITMAP$_2$:</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) MULTISCAN-SHARED

- $a: 10, b: 20, c: 40, d: 20, e: 20$
- $T = 30$
- $m = 4$
- MULTISCAN returns $\{b, c, d\}$
- MULTISCAN-SHARED returns $\{c\}$ - correct
Observations from Case Studies

• Graphs in the paper
• HYBRID
 – MULTI-LEVEL rarely performed well
 – DEFER-COUNT and MULTI-STAGE did well
 – If skew with only a few heavy elements, use DEFER-COUNT with small f (small space in sampling scan)
 – If Data is not too skewed, use MULTI-STAGE (less overhead)
• MULTIBUCKET
 – MULTISCAN-SHARED2 good in general
 – large memory : use UNISCAN
Summary and Conclusions

• Performing multiple passes, helps prune many false positives

• Iceberg queries are found in data-warehousing, data mining etc.

• We saw efficient techniques to execute iceberg queries that are better than conventional schemes