- Design and Analysis of Algorithms
- Algorithm: precise instructions on how to perform a task
- Design: solve hard problem using basic operations
 - abstraction
 - reduction
 - divide and conquer
 - dynamic programming
 - greedy
- Analysis
 recall: Huffman tree

- correctness: why can this tree be used for encoding/decoding?
- optimality: why merge two least frequent characters?
 (it produces the shortest encoding)
- time/space complexity: how much time/memroy is needed to run the alg with n characters?
 (- robustness - fairness - privacy ...)
- **Asymptotic Analysis**

- **Def.** \(f(n) = \Theta(g(n)) \) if \(\exists \) constants \(C_1, C_2 > 0 \) such that
 \[
 \forall n > 0 \quad C_1 g(n) \leq f(n) \leq C_2 g(n)
 \]

- **Property**: 1. Small values of \(n \) does not matter
 \[
 f(n) = (0, 0, 0) \quad g(n) = n^2
 \]
 \(\quad \) still \(f(n) = O(g(n)) \)

 2. Drop the insignificant term
 \[
 3n^3 + 50n^2 + 100n + 250 = O(n^3)
 \]
 \[
 1 \leq \log n < \sqrt{n} < n < n^2 < n^3 < 2^n < 3^n < \ldots
 \]

- **Why asymptotic?**

 - Lazy
 \[
 \log n + \log(n-1) + \ldots + \log(1) = \Theta(n \log n)
 \]

 \[
 \geq \frac{n}{2} \log \frac{n}{2} = \frac{n}{2} \log n - \frac{n}{2}
 \]

- **Robust**

- **Easy to compare**

- **Euclid's Algorithm**: Greatest Common Divisor (gcd)

- **Given**: \(a, b \) nonnegative integers

- **Goal**: Find the (largest \(c \) such that \(c \) is a divisor of both \(a, b \))

 \[
 (\gcd(0, 0) = 0)
 \]

- \(\gcd(100, 30) \)

 \[
 \downarrow
 \]

- \(\gcd(30, 10) \)

 \[
 \downarrow
 \]

- \(\gcd(10, 0) = 10 \)
- Correctness:
 - Lemma: gcd always terminates

Hypothesis: if \(a + b \leq n \), then gcd terminates.

Base case: \(n = 0 \)
 \[a = b = 0 \checkmark \]

Induction: assume hypothesis hold for \(n \), consider \(a + b = n + 1 \) (without loss of generality \(a \geq b \))

- if \(a = n + 1 \), \(b = 0 \), \(\checkmark \)
- otherwise \(b + (a \mod b) < a + b = n + 1 \)

by induction hypothesis, \(\text{gcd}(b, a \mod b) \) terminates

\[\text{gcd}(a, b) \]

- if \(a < b \) then
 - swap \((a, b)\)
- if \(b = 0 \) then
 - return \(a \)
- else return
 \[\text{gcd}(b, a \mod b) \]

- Lemma: \(\text{gcd}(a, b) \) is correct.

 if \(b = 0 \) then \(\text{gcd}(a, b) = a \)

 if \(b \neq 0 \) let \(a \mod b = a - kb \) \((k: \text{integer})\)

 if \(c \) is common divisor of \(a, b \),
 \[
 \frac{a \mod b}{c} = \frac{a - kb}{c} = \frac{a}{c} - k \frac{b}{c}
 \]

 integer

 \(\Rightarrow \) \(c \) is a c.d. of \(b, a \mod b \)

 if \(c \) is c.d. of \(b, a \mod b = a - kb \)

 \[
 \frac{a}{c} = \frac{(a - kb) + kb}{c} = \frac{a - kb}{c} + k \frac{b}{c}
 \]

 \(\Rightarrow \) \(c \) is a c.d. of \(a, b \)

 \(\Rightarrow \) \(\text{gcd}(a, b) = \text{gcd}(b, a \mod b) \) \(\checkmark \)