- Structure of Shortest Paths
- Dijkstra's algorithm
- Bellman-Ford Algorithm

- Given a graph G, edge (u, v) has length $l(u, v)$
 find the shortest path from s to t.
 \[
 \text{length of path} = \sum_{(u, v) \in \text{path}} l(u, v)
 \]

- Recall: Shortest path on DAG.
 Shortest path using BFS
 \[
 s \rightarrow a \rightarrow b \rightarrow t, \text{ len: } \]

- Basic property of shortest path

 Let $S, u_1, u_2, \ldots, u_k, t$ is a shortest path from s to t.
 Claim: S, u_1, u_2, \ldots, u_i is also a shortest path from s to u_i.

 \[
 S \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad U_k \quad t
 \]

 Proof: If there is a shorter path $s, v_1, v_2, \ldots, v_k, u_i$
 then $s, v_1, \ldots, v_k, u_i, u_{i+1}, \ldots, U_k, t$ will also be
 shorter than $s, u_1, u_2, \ldots, U_k, t$, but that is impossible.

- Dynamic Programming:
 \[
 d(u) : \text{distance from } s \text{ to } u.
 \]
 \[
 \text{length of the shortest path}
 \]

 \[
 d(u) = \min_{(u, v) \in F} \{ d(u) + l(u, v) \} \quad \text{(Same as the recursion for DAG)}
 \]

 Problem: If graph has cycles, it's hard to determine ordering.

- Dijkstra's Algorithm
main idea: compute \(d(v) \) in increasing order.

\[\text{initialize } d(s) = 0, \text{ mark } s \text{ as visited} \]

\[\text{for any edge } (s,u), \quad h(u) = d(s,u) \quad \text{(Prev}(u) = s) \]

\[\text{for any other vertex } h(u) = +\infty \]

\[\text{for } i = 2 \text{ to } n \]

let \(u \) to be the vertex with minimum \(h(u) \) among unvisited vertices

\[d(u) = h(u), \text{ mark } u \text{ visited} \]

for all edges \((u,v)\)

if \(d(u) + (u,v) < h(v) \)

\[h(v) = d(u) + (u,v) \quad \text{(Prev}(v) = u) \]

Correctness: use induction

Property: at any iteration; \(d(u) \) for any visited \(u \) is the correct distance from \(s \) to \(u \); \(h(v) \) for any unvisited \(u \) is length of shortest path from \(s \) to \(v \) but last step uses a visited vertex.
Base case: only s is visited, property is clearly true.

Induction: suppose property is true at the beginning of iteration i, it is also true after the iteration.

Need: (1) for the vertex u, we pick, $d(u)$ is the length of shortest path.
(2) $h(u)$ updated correctly.

1. Assume shortest path from s to u is $s, v_1, v_2, \ldots, v_r, u$.
 - If v_r is visited, length $\geq h(u)$.
 - If v_r is not visited, let v_j be the first unvisited vertex.
 \[\text{length}(s, v_1, v_2, \ldots, v_{j-1}, v_j) \geq h(v_j) \geq h(u) \]

2. After visit u.
 \[h(u) = \min_{u: \text{visited}} d(u) + (u, u) \]

- Running time:
 - naive: $O(n^2)$
 - heap: $O((n+m) \log n)$
 - Fibonacci heap: $O(n \log n + m)$

- Negative edges:
 - Dijkstra fails

- Negative cycle
- Negative cycle
 shortest path does not exist
 \(S \rightarrow a \rightarrow b \rightarrow S \rightarrow a \rightarrow b \rightarrow \ldots \)

- Claim: If \(G \) does not have a negative cycle, shortest path will not visit any vertex twice.

Proof: consider path \(S, u_1, u_2, \ldots, t \) in \(S \).

 if \(u_i = u_j \)

 because \(u_i, u_{i+1}, \ldots, u_j \) is a cycle

 length \((u_i, u_{i+1}, \ldots, u_j) \geq 0 \)

 remove the cycle and \(S, \ldots, u_i, u_{j+1}, u_{j+2}, \ldots, t \)

 has length \(\leq \) length of original path

\[\Rightarrow \text{number of steps of shortest path} \leq n-1 \]

- Bellman-Ford

 \(d(u, i) = \) shortest path from \(S \) to \(u \) using at most \(i \) steps.

 initialize \(d(S, 0) = 0 \), \(d(u, 0) = +\infty \)

 \[d(u, i) = \min \{ d(u, i-1), \min_{(v, u) \in E} d(v, i-1) + (v, u) \} \]

Claim: if the graph has no negative cycles, \(d(u, n-1) \) is the distance to \(u \).

Running time: \(O(nm) \)

Claim: \(d(u, n) \neq d(u, n-1) \) for some \(u \), there is a negative cycle.

if there is a negative cycle, then \(\exists u \), \(d(u, n) \neq d(u, n-1) \)