- Recursion for randomized quicksort

\[E(T_n) = n + \frac{1}{n} \sum_{i=1}^{n} (E(T_{i-1}) + E(T_{n-i})) \]

1. Index of pivot
2. Time to recursively right part.
3. Solve left part.

1. Guess the solution

\[\text{observe: similar to mergesort recursion } T(n) = n + 2T(\frac{n}{2}) \]

\[n \]

\[i-1 \]

\[n-i \]

guess \(E(T_n) \leq C \cdot n \log_2 n \) for some large constant \(C \)

2. Base case: define \(E(T_1) = E(T_0) = 0 \)

\[E(T_2) = 1 \]

assume \(E(T_k) \leq C \cdot k \log_2 k \) for all \(k < n \)

\[E(T_n) = n + \frac{1}{n} \sum_{i=1}^{n} (E(T_{i-1}) + E(T_{n-i})) \]

\[= n + \frac{1}{n} \sum_{i=1}^{n} E(T_{i-1}) \]

\[\leq n + \frac{1}{n} \sum_{i=1}^{n} C \cdot i \log_2 i \]

Observation: \(\log_2 i \) is sometimes \(\leq \log_2 n \)

more precisely \(\log_2 i \leq \log_2 n - 1 \)

\[\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor n/2 \rfloor} C \cdot i \log_2 i \]

\[\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor n/2 \rfloor} C \cdot \log_2 n - \frac{2}{n} \sum_{i=1}^{\lfloor n/2 \rfloor} C \cdot i \log_2 n \]

\[\leq n + \frac{2}{n} \cdot \frac{n(n-1)}{2} \log_2 n - \frac{2}{n} \cdot \frac{(n+1)n}{6} \cdot C \]

\[\leq C \cdot n \log_2 n + (n - \frac{Cn}{4}) \]

(when \(C > 4 \))
- Quick Selection
 - Given an array of size n, find the k-th smallest number.
 - Idea: similar to quick sort
 - Pick a random pivot number in the array
 - Partition the array (same as quick sort)
 - Decide which part has the number we want
 - Recurse only on the relevant part
 - Let T_n be the time for quick selection on n numbers.
 - $T_n = n + \begin{cases} Ti - 1 & \text{if } i > k \quad (k \text{ is in the left part}) \\ 0 & \text{if } i = k \\ Ti - 1 & \text{if } i < k \quad (k \text{ is in the right part}) \end{cases}$
 - $E[T_n] = n + \frac{1}{n} \sum_{i=1}^{k-1} E[T_i - 1] + \frac{1}{n} \sum_{i=k+1}^{n} E[T_i - 1]$

- Birthday Paradox
 - What is the prob. that k people all have different birthdays?
 - Define random variables
 - $A_k = 1$ if all k people have different birthdays
 - 0 otherwise (there are at least a pair that has the same birthday)
 - Want to compute $Pr[A_k = 1]$
 - Idea: use conditioning
 - $Pr[A_k = 1 | A_{k-1} = 1]$: if first $k-1$ people have different birthdays
 - What is the prob. that k-th person does not have the same birthday with the $k-1$ people?
 - $\Rightarrow Pr[A_k = 1 | A_{k-1} = 1] = \frac{365 - (k-1)}{365} = \frac{365 - k + 1}{365}$
 - Let $n = 365$
 - $Pr[A_k = 1 | A_{k-1} = 1] = 1 - \frac{k-1}{n}$
 - $Pr[A_k = 1 | A_{k-1} = 0] = 0$
\[\Pr[A_k = 1] = \Pr[A_{k-1} = 1] \cdot \Pr[A_k | A_{k-1} = 1] \]
\[= \Pr[A_{k-1} = 1] \cdot (1 - \frac{k-1}{n}) \]

Base case \(\Pr[A_1 = 1] = 1 \)

\[\Pr[A_k = 1] = (1 - \frac{k-1}{n}) \cdot (1 - \frac{k-2}{n}) \cdot (1 - \frac{k-3}{n}) \cdots (1 - \frac{1}{n}) \cdot \Pr[A_1 = 1] \]

Observation: \(e^x \geq 1 + x \)

\[\Rightarrow e^{-\frac{k}{n}} \geq (1 - \frac{k}{n}) \]

\[\Pr[A_k = 1] \leq e^{-\frac{k}{n}} \cdot e^{-\frac{k-1}{n}} \cdot e^{-\frac{k-2}{n}} \cdots e^{-\frac{1}{n}} \]
\[= e^{-\frac{k(k-1)}{2n}} \]
\[= e^{-\frac{K(K-1)}{2n}} \]

When \(K \geq \sqrt{2n+1} \), \(\Pr[A_k = 1] \leq e^{-1} \)

- Coupon collector
 - \(n \) types of coupon, \(1 \$ \) gives one coupon at random
 - How much money does it take to get \(\geq 1 \) of each type?
 - Define random variable
 - Let \(T_i \) be the amount of money spent after getting the \((i-1)\)-th distinct coupon, before getting the \(i\)-th coupon.

\[
\begin{array}{ccccccc}
1 & 2 & 4 & 2 & 5 & 4 & 1 & 6 \\
T_1 & T_2 & T_3 & T_4 & T_5 \\
\end{array}
\]

- Let \(T \) to be the amount of money for \(n \) distinct coupons

\[T = T_1 + T_2 + T_3 + \ldots + T_n \]

- Linearity of expectation \(\mathbb{E}[T] = \sum \mathbb{E}[T_i] \)
- how to compute \(\mathbb{E}[T_i] ? \)

\[\Pr[T_i = 1] = \frac{n - (i-1)}{n} = 1 - \frac{i-1}{n} \]
\[\Pr[T_i = 1] = \frac{n - (i-1)}{n} = 1 - \frac{i-1}{n}\]

\[\Pr[T_i = 2] = \frac{i-1}{n} \times \left(\frac{1}{n}\right)\]

Pr[first coupon is a duplicate] Pr[2nd coupon is new]

\[\Pr[T_i = 3] = \left(\frac{i-1}{n}\right)^2 \left(1 - \frac{i-1}{n}\right)\]

\[\Pr[T_i = t] = \left(\frac{i-1}{n}\right)^{t-1} \left(1 - \frac{i-1}{n}\right)\]

\[\text{Geometric distribution}\]

\[ECT_i = \sum_{t=1}^{\infty} t \cdot \Pr[T_i = t] = \frac{n}{n - (i-1)}\]

\[ECT = ECT_1 + ECT_2 + \ldots + ECT_n\]

\[= \frac{n}{n} + \frac{n}{n-1} + \ldots + \frac{n}{1}\]

\[= n \cdot \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}\right)\]

\[= \Theta(n \log n)\]