• Fibonacci numbers (Basic Idea and Memorization)
• Shortest Path on Directed Acyclic Graphs (Ordering)
• Longest Common Subsequence (2-d tables)

- Fibonacci number
 \[F(0) = 1 \quad F(1) = 1 \quad \forall n \geq 2 \quad F(n) = F(n-1) + F(n-2) \]
- how to compute \(F(n) \)

 - recursive solution

 \[
 \text{Fib}(n) =
 \begin{cases}
 1 & \text{if } n \leq 1 \\
 \text{Fib}(n-1) + \text{Fib}(n-2) & \text{return } \text{Fib}(n-1) + \text{Fib}(n-2)
 \end{cases}
 \]

- running time

 \[
 T(n) = T(n-1) + T(n-2) + O(1)
 \]

 \[
 T(n) = O \left(\left(\frac{\sqrt{5} + 1}{2}\right)^n \right)
 \]

- memorized search

 \[
 \text{Fib}(n) =
 \begin{cases}
 1 & \text{if } n \leq 1 \\
 \text{if } n \text{ is "solved", return solution}[n] \\
 R = \text{Fib}(n-1) + \text{Fib}(n-2) \\
 \text{mark } n \text{ as solved, solution}[n] = R \\
 \text{return } R
 \end{cases}
 \]

 \[
 T(n) = O(\# \text{ of elements in table} \times \text{amount of time per entry})
 \]

 \[
 = O(n \times 1) = O(n)
 \]
- **Iterative Solution**

 \[
 \text{Fib}(n) \\
 \text{if } n \leq 1 \text{ return } 1 \\
 F(0) = F(1) = 1 \\
 \text{for } i = 2 \to n \\
 F(i) = F(i-1) + F(i-2) \\
 \text{return } F(n)
 \]

- General idea of dynamic Programming (DP)
 - save intermediate results to avoid repeated computation
 - Design a DP algorithm
 - list, matrix, ...
 - (1) identify important subproblems (make a table)
 - (2) fill in the entries of the table in a "good" order

- **Shortest path in directed acyclic graphs**

 - directed acyclic graph (DAG)

 ![DAG Diagram]

 - Problem: Given a DAG, edge \((i,j) \) has length \(\text{DAG}_{ij} \)
 - want to find shortest path from \(S \) to \(T \)
 - (the length)

 - **Recursive solution** (think: what is the last step of the solution)

 \[
 \text{shortest}(u) : \text{length of shortest path from } S \text{ to } u \\
 \text{if } u = S \text{ return } 0 \\
 \text{return } \min \left\{ \text{shortest}(v) + \text{DAG}_{uv} \middle| u \leadsto v \right\} \\
 \]

 ![Recursive Solution Diagram]
- memorized search

 \[
 \text{shortest}(u) = \begin{cases}
 \text{if } u = s & \text{return } 0 \\
 \text{if } u \text{ is "solved" } & \text{return } \text{distance}[v] \\
 r = \infty \\
 \text{for } u = 1 \text{ to } n \\
 \text{if } (u,v) \text{ is an edge, } \text{shortest}(u) + w_{uv} < r \\
 r = \text{shortest}(u) + w_{uv} \\
 \text{mark } v \text{ as solved, distance } [v] = r \\
 \text{return } r
 \end{cases}
 \]

- Example: Longest Common Subsequence (LCS)

- Input: two sequences \(a = 1, 2, 3, 2, 1 \) \(b = 2, 3, 1, 4, 1 \)

- Subsequence: subset of elements in the same order (not necessarily continuous)

 \[
 \begin{aligned}
 1, 2, 3 \checkmark & \quad \text{for } a = 1, 2, 3, 2, 1 \\
 1, 3, 2 \checkmark & \quad \text{for } a = 1, 2, 3, 2, 1 \\
 1, 2, 1 \checkmark & \quad \text{for } a = 1, 2, 3, 2, 1 \\
 1, 1, 2 \times & \quad \text{for } a = 1, 2, 3, 2, 1 \\
 \end{aligned}
 \]

- Problem: find (the length of) the longest common subsequence of \(a, b \).

 (in this case \(2, 3, 1 \))

 (recall: look at the last step of the solution)

 \[
 \begin{aligned}
 a = 1, 2, 3, 2, 1 \quad & \text{len}(a) = n \\
 b = 2, 3, 1, 4, 1 \quad & \text{len}(b) = m \\
 \end{aligned}
 \]

- Q: Do \(a_n, b_m \) belong to the LCS?

 \[
 \begin{aligned}
 \text{case 1} & \quad \text{because } a_n = b_m \text{ it is possible both of them are in LCS} \\
 & \quad \text{this case is impossible} \\
 \text{LCS} &= \begin{cases}
 \square \text{ (if } a_n \neq b_m) \\
 \square \square \text{ (if } a_n = b_m)
 \end{cases} \\
 \text{LCS} &= \begin{cases}
 \square \text{ (if } a_n \neq b_m) \\
 \square \square \text{ (if } a_n = b_m)
 \end{cases} \\
 \end{aligned}
 \]

 \[
 \begin{aligned}
 \text{case 2} & \quad a_n \text{ is not in LCS} \\
 \text{LCS}(a, b) &= \text{LCS}(a[1\ldots n-1], b[1\ldots m]) \\
 \end{aligned}
 \]

 \[
 \begin{aligned}
 \text{case 3} & \quad b_m \text{ is not in LCS} \\
 \text{LCS}(a, b) &= \text{LCS}(a[1\ldots n-1], b[1\ldots m]) \\
 \end{aligned}
 \]
\[\text{LCS}(a, b) = \text{LCS}(a[1..n], b[1..m-1]) \]