- Fibonacci numbers (Basic Idea and Memorization)
- Shortest Path on Directed Acyclic Graphs (Ordering)
- Longest Common Subsequence (2-d tables)
- Fibonacci number

$$
F(0)=1 \quad F(1)=1 \quad \forall n \geqslant 2 \quad F(n)=F(n-1)+F(n-2)
$$

- how to compute $F(n)$
- recursive solution

Fib (n)
if $n \leqslant 1$ then return 1 return Fib $(n-1)+F_{i b}(n-2)$

- running time

$$
\begin{aligned}
& T(n)=T(n-1)+T(n-2)+O(1) \\
& \left.T(n)=O\left(\frac{\sqrt{5}+1}{2}\right)^{n}\right)
\end{aligned}
$$

- memorized search

Fih(n)
if $n \leqslant 1$ return 1

* if n is "solved", return solution [n]

$$
r=f(n-1)+f(n-2)
$$

- mark n as solved, solution $[n]=r$ return r

Solution $\left\lvert\, \begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 & 5\end{array}\right.$

$$
T(n)=0 \text { \# of elements in table } x \text { amount of time per entry) }
$$

$$
=O(n \times 1)=O(n)
$$

- iterative solution

$$
\begin{aligned}
& \text { Fib }(n) \\
& \text { if } n \leq 1 \text { return } 1 \\
& F(0)=F(1)=1 \\
& \text { for } i=2 \text { ton } \\
& \quad f(i)=F(i-1)+F(i-2)
\end{aligned}
$$

return $F(n)$

- General idea of dynamic programming (DP)
- save intermediate results to avoid repeated computation
- Design a DP algorithm
(1) identify important subproblems (make a table)
(2) Fill in the entries of the table in a "good" order.
- shortest path in directed acydic graphs
- directed acyclic graph (DAG)

Source

- problem: Given a DAG, edge (i,j) has Congth DAG i,j
want RAf find shortest path from s to t.
(the length)
- recursive solution (think: what is the last step of the solution)
shortest (U) : length of shortest path from to V if $v=s$ return 0
return min

$$
u:(u, v) \text { is }
$$

an edge

$$
\operatorname{shortest}(u)+W_{u, v}
$$

S^{*}

- memorized search
shortest (v)
if $v=s$ return 0
if v is "solved" return distance [v]

$$
r=\infty
$$

for $u=1$ to n
if (u, v) is an edge, shortest $(u)+w_{u, v}<r$

$$
r=\operatorname{shortest}(u)+w_{u, v}
$$

m ark v as solved, distance $[v]=r$
return r

$$
\text { distance } \begin{array}{|lllll}
5 & a & b & c & d \\
\hline 0 & 4 & 6 & 5 & 7 \\
\hline
\end{array}
$$

- Example: Longest Common Subsequence (LCS)

Input: two sequences $a=1,2,3,2,1 \quad b=2,3,1,4$,)
subsequence: subset of elements in the same order (not necessarily continuars)

$$
\begin{array}{lll}
\text { egg. } & 1,2,3 \vee \\
1,3,2 \vee \\
1,2,1 \vee & =1,2,3,2,1 \\
=- & a=
\end{array}
$$

problem: f ind (the length of) the longest common subsequence of a, b.

$$
\text { (in this case } 2,3,1 \text {) }
$$

(recall: look at the last step of the solution)

$$
\begin{array}{ll}
a=1,2,3,2,1 & \operatorname{len}(a)=n \\
b=2,3,1,4,1 & \operatorname{len}(b)=m
\end{array}
$$

$Q:$ Do a_{n}, b_{m} belong to the LCS.
case (1) because $a_{n}=b_{m}$
it is possible both of them are in LCS
(if $a_{n} \neq b_{m}$) this case is impossible

$$
\begin{aligned}
& \angle C S=? ? \\
& \square ? \operatorname{LCS}(a[1 \ldots n-1], b[1 \ldots m-1])
\end{aligned}
$$

case (2) a_{n} is not in LCS

$$
\operatorname{LCS}(a, b)=\operatorname{LCS}(a[1 \ldots n-1], b[1 \ldots m])
$$

case (3) bm is not inLCS

$$
\operatorname{Lcs}(a, b)=\operatorname{Lcs}(a[1 \ldots n], b[1 \ldots m-1])
$$

