- Graph
 - a set of nodes (vertices) connected by edges
 - (V, E) \(V = \{1, 2, \ldots, n\} \)
 - edge \((i, j)\)
 - \(E = \{(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)\}\)

- abstraction
- Examples
 1. road network
 2. supply network
 3. social network (edges = friends)
 4. dependency network (COMPSCI 201 \(\rightarrow\) 320)
 5. internet (edges = hyperlinks)

- directed and undirected graph

- graph problems
 1. shortest path
 2. minimum spanning tree
 3. community detection
 4. scheduling
 5. pagerank

- represent (store) a graph

- adjacency array
 \[A[i, j] = \begin{cases}
 1 & \text{if } (i, j) \text{ is an edge} \\
 0 & \text{if } (i, j) \text{ is not an edge}
\end{cases} \]
benefit: simple, quickly know whether \((i,j) \in E\)
but: take \(\Theta(n^2)\) space

- adjacency list

 Store a list for every vertex
 list \(i\) contains set of edges from vertex \(i\)

 1: \([2, 4]\)
 2: \([1, 3, 4]\)
 3: \([2, 4]\)
 4: \([1, 2, 3]\)

 benefit: take \(\Theta(m)\) space
 but: hard to know whether \((i,j)\) is an edge

- Basic Graph algorithms

 - Graph traversal: want to visit all nodes of graph \(G\) by following edges.

 - DFS (Depth First Search)

 \[
 \text{DFS} \\
 \text{for } i = 1 \text{ to } n \\
 \quad \text{if } i \text{ is not visited} \\
 \quad \quad \text{DFS}_\text{visit}(i) \\
 \text{DFS}_\text{visit}(i) \\
 \]

 - why do we need this loop?

 - Connectivity

 - directed

 \[
 \begin{array}{c}
 0 \quad 0 \\
 1 \quad 2 \quad 3 \\
 \end{array}
 \]

 (UndirectedGraph is connected if \((i,j)\) there is a path from \(i\) to \(j\))

 - Depth First Search Tree

 - \(j\) is a child of \(i\), if \(\text{DFS}_\text{visit}(i)\) called \(\text{DFS}_\text{visit}(j)\)
DFS: \[0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 4\]

- Pre-order and post-order
 - Pre-order: order of visits \(1, 2, 3, 4\)
 - Post-order: order of DFS_visit(i) returns \(3, 4, 2, 1\)

- DFS and stack
 - Preorder: order of entering the stack
 - Post-order: order of exiting the stack

- Edge types
 - Tree edge
 - Forward edge
 - Backward edge
 - Cross edge

- BFS (Breadth First Search)

\[
\text{BFS_visit(i)}
\]

- Put \(i\) into a queue (mark \(i\) as visited)
- While queue is not empty
 - \(u \leftarrow \text{dequeue}\)
 - For each edge \((u, v)\)
 - If \(v\) is not visited
 - Put \(v\) into the queue
 - Mark \(v\) as visited.
BFS tree

BFS order: order of entering the queue

Can be used to compute shortest path.

u is a child of v, if u is added to the queue when processing v

(Shortest path tree)