• Basic Concept
• Example: Dynamic Array
• Techniques: Aggregate, accounting (charging), potential

- “amortize”: paying off debt/mortgage
- Idea: Certain steps in algorithm may be very expensive
 if these steps don’t happen often, total running time is bounded.
- Problem: dynamic array
 recall: java has “arraylist”, vector is a growing array
 vector supports “append” operation: add 1 element to end of vec.
 Goal: do not want to waste a lot of space
 make sure append operation is not very slow

- Solution: initially 1 element, space of size 1
 append

  ```
  if length = 2^i (length = 1, 2, 4, 8, ...) 
  allocate new space of size 2^{i+1} 
  copy the current 2^i elements to the new space 
  put new element in 2^{i+1} location 
  free the old space 
  else 
  put new element into first free space.
  ```

- Example

```
length 4 \rightarrow 5
```

- Space: If there are n elements in array, it has \(\leq 2n \) space.
- Running time: append operation can take \(O(n) \) time.

 naive analysis: if we do \(n \) append operations
it can take $O(n^2)$ time.

- Aggregate: take the sum of running times

 step 2^i takes 2^i operations
 other steps take 1 operation

 $T(n) = \sum_{i=0}^{\log_2 n} 2^i + \sum_{i=1}^{n} 1$

 "heavy" operations
 "light" operations

 $\leq 2n + n \leq 3n$

 simple, but not very general.

- Accounting (charging)

 idea: save "money" for light operations, pay money for heavy operations

 observation: "heavy" operation comes at time 2^i

 before that, $2^{i-1}, 2^{i-2}, \ldots, 2^1$ are light operations

 $2^{i-1} - 1$ light operations

 if we save 2 time units per light operation, can "charge" 2^{i-2} to these light operation, and the remaining 2 is charged to the current operation.

 - For every operation: time paid + time saved ≤ 3

 Total runtime $\leq 3n$

- Potential argument

 Keep a potential function Φ, $\Phi \geq 0$

 amortized cost for an operation = actual cost - current potential

 + new potential.

 $= \text{actual cost} - (\Phi_{\text{current}} - \Phi_{\text{new}})$

 $\Phi_i = 2^n - n$
\[\Phi = 2^n - m \]

\[\Phi_{\text{current}} \]

\[\Phi_{\text{new}} = 2 \]

“Heavy” step: before \(n = 2^i \), \(m = 2^i \)
after \(n = 2^{i+1} \), \(m = 2^{i+1} \)
actual cost = \(2^i \)
amortized cost = \(2 \)

“Light” step: before \(n = m \)
after \(n+1 = m \)
actual cost = \(1 \)
amortized cost = \(3 \)

Claim: \[\sum \text{actual cost} = \sum \text{amortized cost} + \Phi_{\text{init}} - \Phi_{\text{end}} \]

Proof: Suppose alg had \(k \) steps.

Let \(\Phi_i \) be the potential function after step \(i \)

\[\text{for step } i \text{ actual cost} = \text{ amortized cost} + (\Phi_{i-1} - \Phi_i) \]

\[= \sum \text{actual cost} = \sum \text{amortized cost} + \Phi_0 - \Phi_1 + \Phi_1 - \Phi_2 + \cdots + \Phi_k \]

\[= \sum \text{amortized cost} + \Phi_0 - \Phi_k \]

therefore \[\sum \text{actual cost} = \sum \text{amortized cost} + \Phi_{\text{init}} - \Phi_{\text{end}} \]

For dynamic array \[\Phi_{\text{init}} = 1 \]

\[\sum \text{actual cost} \leq \sum \text{amortized cost} + 1 = O(n) \]

\[\text{because } \Phi_{\text{end}} \geq 0 \]

- Simple examples we’ve seen that uses the idea of “amortize”
 - DFS \(O(n+m) \)
 - merge sort \(O(n) \)