- Dijkstra Algorithm

 \[\text{want: compute shortest paths from } S \text{ to other vertices in ascending order of distance}\]

 \[\text{initially only know } \text{dis}(S) = 0\]

 \[\text{first step: try to find a vertex closest to } S.\]

 \[\text{observation: the closest point must be a neighbor of } S.\]

 \[\text{next step: neighbors of all vertices that we have computed before}.\]

- maintain a set \(W \)

 \[\text{Property: 1. know the shortest path from } S \text{ to any } u \in W\]

 \[2. \text{distance to any } u \in W \text{ no larger than distance to any } v \notin W\]

- ACG: find a vertex \(u \) \((u \notin W)\), add \(u \to W \).

 \[u \text{ should be the one with min distance to } S\]
among all \(u \notin W \).

Claim: if \(u \) is the one with min distance to \(S \) for \(u \notin W \), then the shortest path from \(S \) to \(u \) only uses points in \(W \).

Proof: assume the shortest path is not entirely in \(W \)

- Implementing Dijkstra's algorithm
 - maintain \(W \) (set of vertices with known shortest path)
 - maintain \(\text{dist}[v] \)

 \[
 \begin{align*}
 \text{for } v \in W & \quad \text{dist}[v] = \text{length of shortest path} \\
 \text{for } v \notin W & \quad \text{dist}[v] = \begin{cases}
 \text{length of shortest path} & \text{to } v \text{ where all vertices are in } W \\
 \end{cases}
 \end{align*}
 \]

 - every iteration: find \(u \notin W \) with smallest \(\text{dist}[u] \)
 add \(u \) to \(W \), update \(\text{dist}[u] \)

- negative edge length
$3 \times 2 = 6$

$\log 3 + \log 2 = \log 6$

$\log 3 + \log 2 + \log \frac{1}{7} = \log \frac{6}{7} < 0$