- bipartite graph

- A bipartite graph $G = (V_1, V_2, E)$, E is a subset of $(i,j) \in V_1 \times V_2$.

 $(V_1: \text{courses} \quad V_2: \text{classrooms} \quad (i,j) \in E: \text{course } i \text{ can be assigned to classroom } j)$

- A matching M is a subset of E, such that edges in M do not share vertices.

 $M: \{(1,1), (2,3), (3,4)\}$

 $\vert M \vert = 3$

 blue: augmenting path

The size of a matching M is just the # of edges in M.

- Given a bipartite graph G and matching M.

 - an edge e is matched if $e \in M$

 unmatched if $e \notin M$

 - a vertex is matched if it's connected to some $e \in M$

 unmatched otherwise.

 - augmenting path P is a path from an unmatched vertex in V_1, to an unmatched vertex on V_2, and the edges alternate between unmatched and matched.

Claim: An augmenting path P has an odd # of edges, and it has exactly 1 more unmatched edges than matched edges.

- XOR operation: If A, B are two subsets of edges,
A \oplus B is also a subset of edges
\[e \in A \oplus B \text{ if } \begin{cases} \exists e \in A, e \notin B \\ \exists e \in B, e \notin A \end{cases} \]

Claim: if \(P \) is an augmenting path for \(M \), then \(M' = M \oplus P \) is also a matching, and \(|M'| = |M| + 1 \)

- Example of DFS for augmenting path

- Then for correctness:

Proof by contradiction:
assume there is a larger matching \(M^* \) (\(|M^*| > |M| \))
\[\Rightarrow \text{there is an augmenting path}. \]

Proof: Look at \(M \oplus M^* \)
\[M \oplus M^* : \begin{cases} \text{each vertex is connected to } \leq 2 \text{ edges} \\ \text{union of vertex-disjoint paths and cycles} \end{cases} \]
- in a cycle: same # of edges in M, M^*
 - in a path: either M^* has 1 more edge or M has 1 more edge

Case 2 must happen because $|M^*| > |M|