Today

- Semantic of recursion in databases
- Datalog
 - for recursion in database queries
- Semi-naïve evaluation using
 - Incremental View Maintenance (IVM)
 - What is a view

Recursion!

A motivating example

```
Parent (parent, child)
```

- Example: find Bart’s ancestors
- “Ancestor” has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 - But you cannot find all his ancestors with a single query

Recursion in Databases

- Consider a graph $G(V, E)$. Can you find out all “ancestor” vertices that can reach “x” using Relational Algebra/Calculus?
Recursion in Databases

- What can we do to overcome the limitation?

Brief History of Datalog

- Motivated by Prolog – started back in 80’s – then quiet for a long time
- A long argument in the Database community whether recursion should be supported in query languages
 - “No practical applications of recursive query theory ... have been found to date” — Michael Stonebraker, 1998
 - Readings in Database Systems, 3rd Edition Stonebraker and Hellerstein, eds.
 - Recent work by Hellerstein et al. on Datalog-extensions to build networking protocols and distributed systems. [Link]

Datalog is resurging!

- Number of papers and tutorials in DB conferences
- Applications in
 - data integration, declarative networking, program analysis, information extraction, network monitoring, security, and cloud computing
- Systems supporting datalog in both academia and industry:
 - Listo (information extraction)
 - LogicBlox (enterprise decision automation)
 - Semmle (program analysis)
 - BOON/Dedalus (Berkeley)
 - Coral
 - LDL++

Reading Material: Datalog

Optional:
1. The datalog chapters in the “Alice Book” Foundations of Databases
 Abiteboul-Hull-Vianu
 Available online: http://webdam.inria.fr/Alice/
2. Datalog tutorial
 SIGMOD 2011
 “Datalog and Emerging Applications: An Interactive Tutorial”

Acknowledgement:
Some of the following slides have been borrowed from slides by Prof. Jun Yang

Recursion in SQL

- SQL2 had no recursion
- SQL3 introduces recursion
 - WITH clause
 - Implemented in PostgreSQL (common table expressions)
Ancestor query in SQL3

```
WITH RECURSIVE Ancestor(anc, desc) AS
    (SELECT parent, child FROM Parent)
    UNION
(SELECT a1.anc, a2.desc
 FROM Ancestor a1,
 Ancestor a2
 WHERE a1.desc = a2.anc)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
```

Fixed point of a function

- If \(f: T \rightarrow T \) is a function from a type \(T \) to itself, a fixed point of \(f \) is a value \(x \) such that \(f(x) = x \)
- Example: What is the fixed point of \(f(x) = x/2 \)?
 - \(0 \), because \(f(0) = 0/2 = 0 \)

Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T' \) such that \(q(T') = T' \)

To compute fixed point of \(q \)

- Start with an empty table: \(T' = \emptyset \)
- Evaluate \(q \) over \(T' \)
 - If the result is identical to \(T' \), stop; \(T' \) is a fixed point
 - Otherwise, let \(T' \) be the new result; repeat
- Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotone)

Finding ancestors

```
WITH RECURSIVE Ancestor(anc, desc) AS
    (SELECT parent, child FROM Parent)
    UNION
(SELECT a1.anc, a2.desc
 FROM Ancestor a1,
 Ancestor a2
 WHERE a1.desc = a2.anc)
SELECT anc, desc
FROM Ancestor
```

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven
Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear
 - WITH RECURSIVE Ancestor(anc, desc) AS
 (SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)
- Linear
 - WITH RECURSIVE Ancestor(anc, desc) AS
 (SELECT parent, child FROM Parent)
 UNION
 (SELECT anc, child FROM Ancestor, Parent
 WHERE desc = parent)

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: \(a \to b \to c \to d \to e \)
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., \(a \to d \) has two different derivations

Mutual recursion example

- Table Natural \(n \) contains 1, 2, ..., 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural
 WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

Semantics of WITH

- WITH RECURSIVE \(R_1, R_2, \ldots, R_n \) AS \(Q \)
 - \(Q \) and \(Q_1, \ldots, Q_n \) may refer to \(R_1, \ldots, R_n \)
- Semantics
 1. \(R_1 \leftarrow \emptyset, \ldots, R_n \leftarrow \emptyset \)
 2. Evaluate \(Q_1, \ldots, Q_n \) using the current contents of \(R_1, \ldots, R_n \):
 \(R_1^{\text{new}} \leftarrow Q_1, \ldots, R_n^{\text{new}} \leftarrow Q_n \)
 3. If \(R_i^{\text{new}} \neq R_i \) for some \(i \)
 3.1. \(R_i \leftarrow R_i^{\text{new}} \)
 3.2. Go to 2.
 4. Compute \(Q \) using the current contents of \(R_1, \ldots, R_n \)
 and output the result

Computing mutual recursion

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural
 WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

 - Even = \(0 \), Odd = \(0 \)
 - Even = \(0 \), Odd = \(1 \)
 - Even = \(2 \), Odd = \(1 \)
 - Even = \(2 \), Odd = \(1, 3 \)
 - Even = \(2, 4 \), Odd = \(1, 3 \)
 - Even = \(2, 4 \), Odd = \(1, 3, 5 \)
 - …
Fixed points are not unique

WITH RECURSIVE Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2 WHERE a1.desc = a2.anc)

\[\text{Ancestor}(\text{parent}, \text{child}) \cup \text{Ancestor}(\text{a1.anc}, \text{a2.desc})\]

- But if \(q\) is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \(\emptyset\)

Thus the unique minimal fixed point is the "natural" answer

Mixing negation with recursion

- If \(q\) is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!

- Example: popular users \((\text{pop} \geq 0.8)\) join either Jessica’s Circle or Tommy’s (but not both)
 - Those not in Jessica’s Circle should be in Tom’s
 - Those not in Tom’s Circle should be in Jessica’s

\[\text{WITH RECURSIVE JessicaCircle(uid) AS}
\{(\text{SELECT uid FROM User WHERE pop \geq 0.8})
\text{AND uid NOT IN (SELECT uid FROM JessicaCircle)),}
\text{RECURSIVE JessicaCircle(uid) AS}
\{(\text{SELECT uid FROM User WHERE pop \geq 0.8})
\text{AND uid NOT IN (SELECT uid FROM JessicaCircle))}\]

Multiple minimal fixed points

- WITH RECURSIVE TommyCircle(uid) AS
 \{(\text{SELECT uid FROM User WHERE pop \geq 0.8})
 \text{AND uid NOT IN (SELECT uid FROM JessicaCircle)),}
 \text{RECURSIVE JessicaCircle(uid) AS}
 \{(\text{SELECT uid FROM User WHERE pop \geq 0.8})
 \text{AND uid NOT IN (SELECT uid FROM JessicaCircle))}\]

Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WTH
 - A directed edge \(B \rightarrow S\) if \(B\) is defined in terms of \(S\)
 - Label the directed edge “\(\neg\)” if the query defining \(R\) is not monotone with respect to \(S\)

- Legal SQL3 recursion: no cycle with a “\(\neg\)” edge
 - Called stratified negation

- Bad mix: a cycle with at least one edge labeled “\(\neg\)”

Stratified negation example

- Find pairs of persons with no common ancestors

\[\text{WITH RECURSIVE NoCommonAnc(person1, person2) AS}
\{(\text{SELECT person1 FROM Parent UNION}
\text{SELECT person2 FROM Parent)),}
\text{NoCommonAnc(person1, person2) AS}
\{(\text{SELECT P1.person FROM Parent P1 WHERE (SELECT P2.person FROM Parent P2})
\text{EXCEPT}
\text{SELECT P1.person, P2.person FROM Parent P1, Parent P2})},
\text{SELECT * FROM NoCommonAnc;}}\]
Evaluating stratified negation

- The stratum of a node R is the maximum number of "−" edges on any path from R in the dependency graph.
 - Ancestor: stratum 0
 - Person: stratum 0
 - NoCommonAnc: stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: Ancestor and Person
 - Stratum 1: NoCommonAnc
 - Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)
- Another language for recursion: Datalog

Datalog: Another query language for recursion

- Ancestor(x, y) : Parent(x, y)
- Ancestor(x, y) : Parent(x, z), Ancestor(z, y)
- Like logic programming
- Multiple rules
- Same "head" = union
- "" = AND
- Same semantics that we discussed so far

Recall our drinker example in RC (Lecture 4)

Find drinkers that frequent some bar that serves some beer they like.

RC: $Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z)$

Datalog: $Q(x) : \neg \text{Frequents}(x, y) \land \neg \text{Serves}(y, z) \land \neg \text{Likes}(x, z)$

Write it as a Datalog Rule

Find drinkers that frequent some bar that serves some beer they like.

RC: $Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z)$

Datalog: $Q(x) : \neg \text{Frequents}(x, y) \land \neg \text{Serves}(y, z) \land \neg \text{Likes}(x, z)$
Write it as a Datalog Rule

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y, z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

- Uses "\(\exists\)" not =
- no need for \(\exists\) (assumed by default)
- Use "\(\land\)" on the right hand side (RHS)
- Anything on RHS the of \(\land\) is assumed to be combined with \(\lor\) by default
- \(\lor\), \(\land\), not allowed – they need to use negation –
- Standard "Datalog" does not allow negation

- How to specify disjunction (OR / \(\lor\))?

Example: OR in Datalog

Find drinkers that (a) either frequent some bar that serves some beer they like, (b) or like beer "BestBeer", (c) or frequent bars that "Joe" frequents.

\[Q(x) = \exists y, z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \lor \text{Likes}(x, y) \lor (\exists w. \text{JoeFrequents}(w) \land \text{Serves}(w, z)) \]

- To specify "OR", write multiple rules with the same "Head"
- Next: terminology for Datalog

EDBs and IDBs

- Extensional Data Bases (EDBs)
 - Input relation names
 - e.g. Likes, Frequents, Serves
 - can only be on the RHS of a rule

 \[\text{JoeFrequents}(w) \rightarrow \text{Frequents}(\"Joe\", w) \]

 \[Q(x) \rightarrow \text{Frequents}(x, y), \text{Serves}(y, z), \text{Likes}(x, z) \]

 \[Q(x) \rightarrow \text{Likes}(x, \"BestBeer\") \]

- Intensional Data Bases (IDBs)
 - Relations that are derived
 - Can be intermediate or final output tables
 - e.g. JoeFrequents, Q
 - Can be on the LHS or RHS (e.g. JoeFrequents)

Graph Example

E (edge relation)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Write a Datalog program to find paths of length two (output start and finish vertices)

\[
P_2(x, y) : - E(x, z), E(z, y)
\]

Example 1: Execution

P2(x, y) : E(x, z), E(z, y)

same as \(E \circ E \) or \(E \times E \)

Example 2

Write a Datalog program to find all pairs of vertices \((u, v)\) such that \(v\) is reachable from \(u\)

• Can you write a SQL/RA/RC query for reachability?
• NO - SQL/RA/RC cannot express reachability
Write a Datalog program to find all pairs of vertices \((u, v)\) such that \(v\) is reachable from \(u\):

Example 1:

\[
R(x, y) : E(x, y) \\
R(x, y) : E(x, z), R(z, y)
\]

Option 1:

\[
R(x, y) : E(x, z), R(z, y)
\]

Option 2:

\[
R(x, y) : E(x, z), R(z, y)
\]

Option 3:

\[
R(x, y) : E(x, z), R(z, y)
\]

Linear Datalog

- **Linear rule**
 - at most one atom in the body that is recursive with the head of the rule
 - e.g. \(R(x, y) : E(x, z), R(z, y)\)

- **Linear Datalog program**
 - if all rules are linear
 - like linear recursion

- Top-down and bottom-up evaluation are possible
 - we will focus on bottom-up

Iteration 1

\[
E
\]

\[
R = E
\]

Example 2:

Vertices reachable in 1-hop by a direct edge

\[
R(x, y) : E(x, y) \\
R(x, y) : E(x, z), R(z, y)
\]

Iteration 2

\[
E
\]

\[
R = E
\]

Example 2:

Vertices reachable in 2-hops

\[
R(x, y) : E(x, y) \\
R(x, y) : E(x, z), R(z, y)
\]

Iteration 3

\[
E
\]

\[
R
\]

Example 2:

Vertices reachable in 3-hops

\[
R(x, y) : E(x, y) \\
R(x, y) : E(x, z), R(z, y)
\]

Iteration 4

\[
R
\]

Example 2:

Vertices reachable in 3-hops

\[
R(x, y) : E(x, y) \\
R(x, y) : E(x, z), R(z, y)
\]

R unchanged - stop
Examples 3 and 4

Write a Datalog program to find all vertices reachable from b

\[
\begin{align*}
R(x, y) & : E(x, y) \\
R(x, y) & : E(x, z), R(z, y) \\
R(x, y) & : R(u, y) \\
Q(x) & : R(b, x)
\end{align*}
\]

Write a Datalog program to find all vertices \(u \) reachable from themselves \(R(u, u) \)

\[
\begin{align*}
R(x, y) & : E(x, y) \\
R(x, y) & : E(x, z), R(z, y) \\
Q(x) & : R(x, x)
\end{align*}
\]

Termination of a Datalog Program

Q. A Datalog program always terminates – why?

- Because the values of the variables are coming from the "active domain" in the input relations (EDBs)
- Active domain = (finite) values from the (possibly infinite) domain appearing in the instance of a database
- E.g. age can be any integer (infinite), but active domain is only finitely many in R(id, name, age)
- Therefore the number of possible values in each of the IDBs is finite
- E.g. in the reachability example \(R(x, y) \), the values of \(x \) and \(y \) come from \{a, b, c, d, e\}
 - at most 5 x 5 = 25 tuples possible in the IDB \(R(x, y) \)
 - in any iteration, at least one new tuple is added in at least one IDB
 - Must stop after finite steps
 - E.g. the maximum number of iteration in the reachability example for any graph with five vertices is 25 (it was only 4 in our example)

Bottom-up Evaluation of a Datalog Program

- Naïve evaluation
- Semi-naïve evaluation

Naïve evaluation - 1

In all subsequent iteration, check if any of the rules can be applied

Do union of all the rules with the same head IDB

Naïve evaluation - 2

Iteration 1:
\[R = E = R_1 \text{ (say)} \]

Iteration 2:
\[\begin{align*}
R &= U \\
&= E \cup R_1 \\
&= R_2 \text{ (say)} \\
R_1 &= R_2 \\
\text{so continue}
\end{align*} \]
Problem with Naïve Evaluation

- The same IDB facts are discovered again and again
 - e.g. in each iteration all edges in \(E \) are included in \(R \)
 - In the \(2^{nd} \) iteration, the first six tuples in \(R \) are computed repeatedly

- Solution: Semi-Naïve Evaluation

- Work only with the new tuples generated in the previous iteration
Semi-Naive evaluation - 4

E
V1 V2 V3 V4
a c a c
b a b a
d b d d
c d c d
da e d a
d e d e

Initially: R = ∅
ΔR1 = R1
△R1 = R1

Iteration 1:
R = E = R1
Delta R1 = R1
So continue.

Iteration 2:
R = R1 ∪ E ⨝ ΔR1 = R2
ΔR2 = R2
ΔR2 = ∅
So continue.

Iteration 3:
R = R2 ∪ E ⨝ ΔR2 = R3
ΔR3 = R3
ΔR3 = R2
So continue.

Iteration 4:
R = R3 ∪ E ⨝ ΔR3 = R4
ΔR4 = R4
ΔR4 = R3
So STOP.

Incremental View Maintenance (IVM)

Why did the semi-naive algorithm work?

Because of the generic technique of Incremental “View” Maintenance (IVM)

What is a view?

Views

- A view is like a “virtual” table
 - Defined by a query, which describes how to compute the view contents on the fly
 - DBMS stores the view definition query instead of view contents
 - Can be used in queries just like a regular table

Creating and dropping views

- Example: members of Jessica’s Circle
 - CREATE VIEW JessicaCircle AS
 SELECT * FROM User
 WHERE uid IN (SELECT uid FROM Member
 WHERE gid = ‘jes’);
 - Tables used in defining a view are called “base tables”
 - User and Member above
 - To drop a view
 - DROP VIEW JessicaCircle;

Using views in queries

- Example: find the average popularity of members in Jessica’s Circle
 - SELECT AVG(pop) FROM JessicaCircle;
 - To process the query, replace the reference to the view by its definition
 - SELECT AVG(pop)
 FROM (SELECT * FROM User
 WHERE uid IN (SELECT uid FROM Member
 WHERE gid = ‘jes’))
 AS JessicaCircle;

Why use views?
Modifying views

- Does it even make sense, since views are virtual?
- It does make sense if we want users to really see views as tables
- Goal: modify the base tables such that the modification would appear to have been accomplished on the view

<table>
<thead>
<tr>
<th>SQL92 updateable views</th>
</tr>
</thead>
<tbody>
<tr>
<td>• More or less just single-table selection queries</td>
</tr>
<tr>
<td>– No join</td>
</tr>
<tr>
<td>– No aggregation</td>
</tr>
<tr>
<td>– No subqueries</td>
</tr>
<tr>
<td>– Other restrictions like "default/ no NOT NULL" values for attributes that are projected out in the view</td>
</tr>
<tr>
<td>• Arguably somewhat restrictive</td>
</tr>
<tr>
<td>• Still might get it wrong in some cases</td>
</tr>
<tr>
<td>– See the slide titled "An impossible case"</td>
</tr>
<tr>
<td>– Adding WITH CHECK OPTION to the end of the view definition will make DBMS reject such modifications</td>
</tr>
</tbody>
</table>

A simple case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;
DELETE FROM UserPop WHERE uid = 123;
translates to:
DELETE FROM User WHERE uid = 123;

An impossible case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;
INSERT INTO PopularUser
VALUES(987, 0.3);
• No matter what we do on User, the inserted row will not be in PopularUser

A case with too many possibilities

CREATE VIEW AveragePop AS
SELECT AVG(pop) AS pop FROM User;
UPDATE AveragePop SET pop = 0.5;
• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower Jessica’s pop?

INSTEAD OF triggers for views

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,
NEW ROW AS n
FOR EACH ROW
UPDATE User
SET pop = pop + (n.pop - o.pop);
Incremental View Maintenance (IVM)

- Why did the semi-naïve algorithm work?
- Because of the generic technique of Incremental View Maintenance (IVM)

Suppose you have
- a database \(D = (R1, R2, R3) \)
- a query \(Q \) that gives answer \(Q(D) \)
- \(D = (R1, R2, R3) \) gets updated to \(D' = (R1', R2', R3') \)
- e.g. \(R1' = R1 \cup \Delta R1 \) (insertion), \(R2' = R2 \Delta R1 \) (deletion) etc.

It suffices to apply the selection condition \(\sigma \)
- and include with the original solution

\(\sigma_{V1}(R \cup \Delta R) = \sigma_{V1}R \cup \sigma_{V1}\Delta R \)
- It suffices to apply the selection condition only on \(\Delta R \)
- and include with the original solution

\(\pi_{V1}(R \cup \Delta R) = \pi_{V1}R \cup \pi_{V1}\Delta R \)
- It suffices to apply the projection condition only on \(\Delta R \)
- and include with the original solution

Example: Join

\[R \times \Delta S = (a1 \times b1) \cup (a2 \times b2) \]

\[\Delta R = (a1 \times b1) \cup (a2 \times b2) \]

\[R \cup \Delta R = (a1 \times b1) \cup (a2 \times b2) \]

\[(R \cup \Delta R) \times (S \cup \Delta S) = (R \times S) \cup (R \times \Delta S) \cup (\Delta R \times S) \cup (\Delta R \times \Delta S) \]

IVM for Linear Datalog Rule

- \(R(x, y) = E(x, z), R(z, y) \)
- i.e. \(R_{sem} \in \text{EDB} \)
- But \(E \) is EDB
 - \(\Delta E = \emptyset \)

Therefore,
- \(E \vdash (R \cup \Delta R) = (E \vdash R) \cup (E \vdash \Delta R) \)
- It suffices to join with the difference \(\Delta R \) and include in the result in the previous round \(E \vdash R \)
- Advantage of having “linear rule”
Unsafe/Safe Datalog Rules

Find drinkers who like beer “BestBeer”
\[Q(x) : Likes(x, “BestBeer”) \]

Find drinkers who DO NOT like beer “BestBeer”
\[Q(x) : \neg Likes(x, “BestBeer”) \]

• What is the problem with this rule?
• What should this rule return?
 – names of all drinkers in the world?
 – names of all drinkers in the USA?
 – names of all drinkers in Durham?

Problem with Negation in Datalog Rules

Find drinkers who like beer “BestBeer”
\[Q(x) : Likes(x, “BestBeer”) \]

Find drinkers who DO NOT like beer “BestBeer”
\[Q(x) : \neg Likes(x, “BestBeer”) \]

• What is the problem with this rule?
• Dependent on “domain” of drinkers
 – domain-dependent
 – infinite answers possible too.
 • keep generating “names”

• Solution:
 • Restrict to “active domain” of drinkers from the input
 Likes (or Frequents) relation
 – “domain-independence” – same finite answer always

• Becomes a “safe rule”
\[Q(x) : Likes(x, y), \neg Likes(x, “BestBeer”) \]