Recursive Query Evaluation
and
Datalog

Instructor: Sudeepa Roy
Announcements

• Office hour (Sudeepa) until 12 noon today
 – send me an email if this does not work and you want to meet

• HW3 due next Monday
Where are we now?

We learnt

✓ Relational Model and Query Languages
 ✓ SQL, RA, RC
 ✓ Postgres (DBMS)
 ▪ HW1

✓ Database Normalization

✓ DBMS Internals
 ✓ Storage
 ✓ Indexing
 ✓ Query Evaluation
 ✓ Operator Algorithms
 ✓ External sort
 ✓ Query Optimization

✓ Map-reduce and spark
 ▪ HW2

• Transactions
 – Basic concepts
 – Concurrency control
 – Recovery

• Distributed DBMS

• NOSQL

• Parallel DBMS
Today

• Semantic of recurrence in databases

• Datalog
 – for recurrence in database queries

• Semi-naïve evaluation using
 – Incremental View Maintenance (IVM)
 – What is a view
Recursion!
A motivating example

Example: find Bart’s ancestors

“Ancestor” has a recursive definition

- X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

• **SQL2 had no recursion**

 – You can find Bart’s parents, grandparents, great grandparents, etc.

    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```

 – But you cannot find all his ancestors with a single query
Recursion in Databases

• Consider a graph $G(V, E)$. Can you find out all “ancestor” vertices that can reach “x” using Relational Algebra/Calculus?

• **NO!** – ANCESTOR cannot be defined using a finite union of select-project-join queries (conjunctive queries)

• No RA/RC expressions can express ANCESTOR or REACHABILITY (TRANSITIVE CLOSURE) (Aho-Ullman, 1979)

• A limitation of RA/RC in expressing recursive queries
Recursion in Databases

• What can we do to overcome the limitation?

1. Embed SQL in a high level language supporting recursion
 – (-) destroys the high level declarative characteristic of SQL

2. Augment RC with a high level declarative mechanism for recursion
 – Datalog (Chandra-Harel, 1982)

• SQL:1999 (SQL3) and later versions support “linear Datalog”
Brief History of Datalog

• Motivated by Prolog – started back in 80’s – then quiet for a long time

• A long argument in the Database community whether recursion should be supported in query languages
 – “No practical applications of recursive query theory ... have been found to date” — Michael Stonebraker, 1998
 Readings in Database Systems, 3rd Edition Stonebraker and Hellerstein, eds.
 – Recent work by Hellerstein et al. on Datalog-extensions to build networking protocols and distributed systems. [Link]
Datalog is resurging!

• Number of papers and tutorials in DB conferences

• Applications in
 – data integration, declarative networking, program analysis, information extraction, network monitoring, security, and cloud computing

• Systems supporting datalog in both academia and industry:
 – Lixto (information extraction)
 – LogicBlox (enterprise decision automation)
 – Semmle (program analysis)
 – BOOM/Dedalus (Berlekey)
 – Coral
 – LDL++
Reading Material: Datalog

Optional:

1. The datalog chapters in the “Alice Book”
 Foundations of Databases
 Abiteboul-Hull-Vianu
 Available online: http://webdam.inria.fr/Alice/

2. Datalog tutorial
 SIGMOD 2011
 “Datalog and Emerging Applications: An Interactive Tutorial”

Acknowledgement:
Some of the following slides have been borrowed from slides by Prof. Jun Yang
Recursive Query in SQL
Recursion in SQL

• SQL2 had no recursion

• SQL3 introduces recursion
 – WITH clause
 – Implemented in PostgreSQL (common table expressions)
WITH RECURSIVE Ancestor(anc, desc) AS
(
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)
)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
Fixed point of a function

- If $f: T \rightarrow T$ is a function from a type T to itself, a fixed point of f is a value x such that $f(x) = x$

- Example: What is the fixed point of $f(x) = \frac{x}{2}$?
 - 0, because $f(0) = 0/2 = 0$
To compute fixed point of a function f

- Start with a “seed”: $x \leftarrow x_0$
- Compute $f(x)$
 - If $f(x) = x$, stop; x is fixed point of f
 - Otherwise, $x \leftarrow f(x)$; repeat

- Example: compute the fixed point of $f(x) = x/2$
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... $\rightarrow 0$

Doesn’t always work, but happens to work for us!
Fixed point of a query

• A query q is just a function that maps an input table to an output table, so a **fixed point** of q is a table T such that $q(T) = T$

To compute fixed point of q

• Start with an empty table: $T \leftarrow \emptyset$
• Evaluate q over T
 – If the result is identical to T, stop; T is a fixed point
 – Otherwise, let T be the new result; repeat

Starting from \emptyset produces the **unique minimal fixed point** (assuming q is monotone)
Finding ancestors

• WITH RECURSIVE
 Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1,
 Ancestor a2
 WHERE a1.desc = a2.anc))
 — Think of the definition as Ancestor = q(Ancestor)
Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships

- In the first step, we deduce that parents and children form ancestor-descendent relationships

- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships

- We stop when no new facts can be proven
Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear
 - WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))
- Linear
 - WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT anc, child
 FROM Ancestor, Parent
 WHERE desc = parent))
Linear vs. non-linear recursion

• Linear recursion is easier to implement
 – For linear recursion, just keep joining newly generated Ancestor rows with Parent
 – For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to converge, but perform more work
 – Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 – Linear recursion takes 4 steps
 – Non-linear recursion takes 3 steps
 • More work: e.g., $a \rightarrow d$ has two different derivations
Mutual recursion example

• Table *Natural (n)* contains 1, 2, ..., 100

• Which numbers are even/odd?
 – An odd number plus 1 is an even number
 – An even number plus 1 is an odd number
 – 1 is an odd number

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))
Semantics of WITH

- WITH RECURSIVE R_1 AS Q_1, ..., RECURSIVE R_n AS Q_n

 Q;
 - Q and Q_1, ..., Q_n may refer to R_1, ..., R_n

- Semantics
 1. $R_1 \leftarrow \emptyset$, ..., $R_n \leftarrow \emptyset$

 2. Evaluate Q_1, ..., Q_n using the current contents of R_1, ..., R_n:
 \[R_{1}^{\text{new}} \leftarrow Q_1, ..., R_{n}^{\text{new}} \leftarrow Q_n \]

 3. If $R_i^{\text{new}} \neq R_i$ for some i
 3.1. $R_1 \leftarrow R_1^{\text{new}}$, ..., $R_n \leftarrow R_n^{\text{new}}$
 3.2. Go to 2.

 4. Compute Q using the current contents of R_1, ..., R_n and output the result.
Computing mutual recursion

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

• \(\text{Even} = \emptyset, \text{Odd} = \emptyset\)
• \(\text{Even} = \emptyset, \text{Odd} = \{1\}\)
• \(\text{Even} = \{2\}, \text{Odd} = \{1\}\)
• \(\text{Even} = \{2\}, \text{Odd} = \{1, 3\}\)
• \(\text{Even} = \{2, 4\}, \text{Odd} = \{1, 3\}\)
• \(\text{Even} = \{2, 4\}, \text{Odd} = \{1, 3, 5\}\)
• ...
Fixed points are not unique

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
<tr>
<td>Abe</td>
<td>Bart</td>
</tr>
<tr>
<td>Abe</td>
<td>Lisa</td>
</tr>
<tr>
<td>Ape</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Bart</td>
</tr>
<tr>
<td>Ape</td>
<td>Lisa</td>
</tr>
<tr>
<td>Bogus</td>
<td>Bogus</td>
</tr>
</tbody>
</table>

Note how the bogus tuple reinforces itself!

• But if q is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \emptyset

• Thus the unique minimal fixed point is the “natural” answer
Mixing negation with recursion

• If q is non-monotone
 – The fixed-point iteration may flip-flop and never converge
 – There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!

• Example: popular users ($\text{pop} \geq 0.8$) join either Jessica’s Circle or Tommy’s (but not both)
 – Those not in Jessica’s Circle should be in Tom’s
 – Those not in Tom’s Circle should be in Jessica’s

• WITH RECURSIVE TommyCircle(uid) AS

 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),

 RECURSIVE JessicaCircle(uid) AS

 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))
Fixed-point iter may not converge

- WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),

- RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Duke CS, Fall 2017
CompSci 516: Database Systems
Multiple minimal fixed points

- WITH RECURSIVE TommyCircle(uid) AS

 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),

- RECURSIVE JessicaCircle(uid) AS

 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Problem: What do we answer if someone asks whether 121 belongs to JessicaCircle?
Legal mix of negation and recursion

• Construct a dependency graph
 – One node for each table defined in WITH
 – A directed edge $R \rightarrow S$ if R is defined in terms of S
 – Label the directed edge “—” if the query defining R is not monotone with respect to S

• Legal SQL3 recursion: no cycle with a “—” edge
 – Called stratified negation

• Bad mix: a cycle with at least one edge labeled “—”
Stratified negation example

• Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),
Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),
NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc))
SELECT * FROM NoCommonAnc;
Evaluating stratified negation

• The stratum of a node R is the maximum number of “−” edges on any path from R in the dependency graph
 – *Ancestor*: stratum 0
 – *Person*: stratum 0
 – *NoCommonAnc*: stratum 1

• Evaluation strategy
 – Compute tables lowest-stratum first
 – For each stratum, use fixed-point iteration on all nodes in that stratum
 • Stratum 0: *Ancestor* and *Person*
 • Stratum 1: *NoCommonAnc*

⌠ Intuitively, there is no negation within each stratum
Summary so far

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)
- Another language for recursion: Datalog
Datalog
Datalog: Another query language for recursion

- Ancestor(x, y) :- Parent(x, y)
- Ancestor(x, y):- Parent(x, z), Ancestor(z, y)

- Like logic programming
- Multiple rules
- Same “head” = union
- “,” = AND

- Same semantics that we discussed so far
Recall our drinker example in RC (Lecture 4)

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Drinker example is from slides by Profs. Balazinska and Suciu and the [GUW] book
Write it as a Datalog Rule

Find drinkers that frequent some bar that serves some beer they like.

RC:
Q(x) = ∃y. ∃z. Frequents(x, y) ∧ Serves(y, z) ∧ Likes(x, z)

Datalog:
Q(x) :- Frequents(x, y), Serves(y, z), Likes(x, z)
Write it as a Datalog Rule

Find drinkers that frequent some bar that serves some beer they like.

RC:
Q(x) = ∃y. ∃z. Frequents(x, y) ∧ Serves(y, z) ∧ Likes(x, z)

Datalog:
Q(x) :- Frequents(x, y), Serves(y, z), Likes(x, z)

• Quick differences:
 – Uses “:-” not =
 – no need for ∃ (assumed by default)
 – Use “,” on the right hand side (RHS)
 – Anything on RHS the of :- is assumed to be combined with ∧ by default
 – ∀, ⇒, not allowed – they need to use negation ¬
 – Standard “Datalog” does not allow negation
 – Negation allowed in datalog with negation

• How to specify disjunction (OR / ∨)?
Example: OR in Datalog

Find drinkers that (a) either frequent some bar that serves some beer they like, (b) or like beer “BestBeer”

RC:
Q(x) = [∃y. ∃z. Frequents(x, y) ∧ Serves(y,z) ∧ Likes(x,z)] ∨ [Likes(x, “BestBeer”)]

Datalog:
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)
Q(x) :- Likes(x, “BestBeer”)
Example: OR in Datalog

Find drinkers that (a) either frequent some bar that serves some beer they like, (b) or like beer “BestBeer”, (c) or, frequent bars that “Joe” frequents

RC:

\[
Q(x) = [\exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z)] \lor [\text{Likes}(x, \text{“BestBeer”})] \\
\lor [\exists w \text{Frequents}(x, w) \land \text{Frequents}(\text{“Joe”, w})]
\]

Datalog:

\[
\text{JoeFrequents}(w) :- \text{Frequents}(\text{“Joe”, w}) \\
Q(x) :- \text{Frequents}(x, y), \text{Serves}(y, z), \text{Likes}(x, z) \\
Q(x) :- \text{Likes}(x, \text{“BestBeer”}) \\
Q(x) :- \text{Frequents}(x, w), \text{JoeFrequents}(w)
\]

• To specify “OR”, write multiple rules with the same “Head”
• Next: terminology for Datalog
Each rule is of the form Head :- Body

Each variable in the head of each rule must appear in the body of the rule

Four rules:

- JoeFrequents(w) :- Frequents(“Joe”, w)
- Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)
- Q(x) :- Likes(x, “BestBeer”)
- Q(x) :- Frequents(x, w), JoeFrequents(w)
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

EDBs and IDBs

- **Extensional DataBases (EDBs)**
 - Input relation names
 - e.g. Likes, Frequents, Serves
 - can only be on the RHS of a rule

```
JoeFrequents(w) :- Frequents(“Joe”, w)
Q(x) :- Frequents(x, y), Serves(y,z), Likes(x,z)
Q(x) :- Likes(x, “BestBeer”)
Q(x) :- Frequents(x, w), JoeFrequents(w)
```

- **Intensional DataBases (IDBs)**
 - Relations that are derived
 - Can be intermediate or final output tables
 - e.g. JoeFrequents, Q
 - Can be on the LHS or RHS (e.g. JoeFrequents)

Tuple in an EDB or an IDB: a FACT
either belongs to a given EDB relation, or is derived in an IDB relation
Graph Example

E (edge relation)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Example 1

Write a Datalog program to find paths of length two (output start and finish vertices)
Example 1

Write a Datalog program to find paths of length two (output start and finish vertices)

P2(x, y) :- E(x, z), E(z, y)
Example 1: Execution

Write a Datalog program to find paths of length two (output start and finish vertices)

\[
P_2(x, y) :- E(x, z), E(z, y)
\]

same as \[E \bowtie_{E.V_2=E.V_1} E \]

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Example 2

Write a Datalog program to find all pairs of vertices \((u, v)\) such that \(v\) is reachable from \(u\).

- Can you write a SQL/RA/RC query for reachability?
Example 2

Write a Datalog program to find all pairs of vertices \((u, v)\) such that \(v\) is reachable from \(u\)

- Not possible in RA/RC
Write a Datalog program to find all pairs of vertices \((u, v)\) such that \(v\) is reachable from \(u\)

\[
R(x, y) :- E(x, y)
\]
\[
R(x, y) :- E(x, z), R(z, y)
\]

Option 1
Example 2

Write a Datalog program to find all pairs of vertices \((u, v)\) such that \(v\) is reachable from \(u\).

Option 1

\[
\begin{align*}
R(x, y) &[: E(x, y) \\
R(x, y) &[: E(x, z), R(z, y)
\end{align*}
\]

Option 2

\[
\begin{align*}
R(x, y) &[: E(x, y) \\
R(x, y) &[: R(x, z), E(z, y)
\end{align*}
\]

Option 3

\[
\begin{align*}
R(x, y) &[: E(x, y) \\
R(x, y) &[: R(x, z), R(z, y)
\end{align*}
\]

E (edge relation)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Linear Datalog

• Linear rule
 – at most one atom in the body that is recursive with the head of the rule
 – e.g. R(x, y) :- E(x, z), R(z, y)

• Linear datalog program
 – if all rules are linear
 – like linear recursion

• Top-down and bottom-up evaluation are possible
 – we will focus on bottom-up
Example 2: Execution

R(x, y) :- E(x, y)
R(x, y) :- E(x, z), R(z, y)

Option 1

(vertices reachable in 1-hop by a direct edge)

Iteration 1

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

R = E
Example 2: Execution

\[R(x, y) \rightarrow E(x, y) \]
\[R(x, y) \rightarrow E(x, z), R(z, y) \]

Option 1

(vertices reachable in 2-hops)
Example 2: Execution

E

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

R(x, y) :- E(x, y)
R(x, y) :- E(x, z), R(z, y)

Option 1

(vertices reachable in 3-hops)
Example 2: Execution

R(x, y) :- E(x, y)
R(x, y) :- E(x, z), R(z, y)

Option 1

R unchanged - stop
Examples 3 and 4

Write a Datalog program to find all vertices reachable from \(b \)

\[
\begin{align*}
R(x, y) & : \text{E}(x, y) \\
R(x, y) & : \text{E}(x, z), R(z, y) \\
QB(y) & : - R(b, y)
\end{align*}
\]

Write a Datalog program to find all vertices \(u \) reachable from themselves \(R(u, u) \)

\[
\begin{align*}
R(x, y) & : \text{E}(x, y) \\
R(x, y) & : \text{E}(x, z), R(z, y) \\
Q(x) & : - R(x, x)
\end{align*}
\]
Termination of a Datalog Program

Q. A Datalog program always terminates – why?
Termination of a Datalog Program

Q. A Datalog program always terminates – why?

• Because the values of the variables are coming from the “active domain” in the input relations (EDBs)

• **Active domain =** (finite) values from the (possibly infinite) domain appearing in the instance of a database
 – e.g. age can be any integer (infinite), but active domain is only finitely many in R(id, name, age)

• Therefore the number of possible values in each of the IDBs is finite

• e.g. in the reachability example R(x, y), the values of x and y come from \{a, b, c, d, e\}
 – at most 5 x 5 = 25 tuples possible in the IDB R(x, y)
 – in any iteration, at least one new tuple is added in at least one IDB
 – Must stop after finite steps
 – e.g. the maximum number of iteration in the reachability example for any graph with five vertices is 25 (it was only 4 in our example)
Bottom-up Evaluation of a Datalog Program

- Naïve evaluation
- Semi-naïve evaluation
In all subsequent iteration, check if any of the rules can be applied.

Do union of all the rules with the same head IDB.
Naïve evaluation - 2

Iteration 1:

R = E = R1 (say)

Iteration 2:

R = E ∪

E ⊙ R1

= R2 (say)

R1 ≠ R2

so continue
Naïve evaluation - 3

Iteration 1:
- \(R = E = R_1 \) (say)

Iteration 2:
- \(R = E \cup E \Join R_1 = R_2 \) (say)
 - \(R_1 \neq R_2 \) so continue

Iteration 3:
- \(R = E \cup E \Join R_2 = R_3 \) (say)
 - \(R_2 \neq R_3 \) so continue
Naïve evaluation - 4

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

Iteration 1:
R = E = R1 (say)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

Iteration 2:
R = E \cup E \bowtie R1 = R2 (say)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

R1 \neq R2
so continue

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
</tr>
</tbody>
</table>

Iteration 3:
R = E \cup E \bowtie R2 = R3 (say)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

R2 \neq R3
so continue

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
</tr>
</tbody>
</table>

Iteration 4:
R = E \cup E \bowtie R3 = R4 (say)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

R3 = R4
so STOP
Problem with Naïve Evaluation

• The same IDB facts are discovered again and again
 – e.g. in each iteration all edges in E are included in R
 – In the 2nd-4th iterations, the first six tuples in R are computed repeatedly

• Solution: Semi-Naïve Evaluation

• Work only with the new tuples generated in the previous iteration
Semi-Naïve evaluation - 1

Initially:
R = Φ

Iteration 1:
R = E = R1 (say)
ΔR1 = R1
Semi-Naïve evaluation - 2

Initially:
\[R = \emptyset \]

Iteration 1:
\[R = E = R_1 \] (say)
\[\Delta R_1 = R_1 \]

Iteration 2:
\[R = R_1 \cup E \bowtie \Delta R_1 = R_2 \] (say)
\[\Delta R_2 = R_2 - R_1 \]
\[\Delta R_2 \neq \emptyset \]
so continue

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
</tr>
</tbody>
</table>
Semi-Naïve evaluation - 3

Initially:
R = Φ

Iteration 1:
R = E = R1 (say)
ΔR1 = R1

Iteration 2:
R = R1 ∪ E ▷ ΔR1 = R2 (say)
ΔR2 = R2 - R1
ΔR2 ≠ Φ so continue

Iteration 3:
R = R2 ∪ E ▷ ΔR2 = R3 (say)
ΔR3 = R3 - R2
ΔR3 ≠ Φ so continue

V1	V2
a | c
b | a
b | d
c | d
d | a
d | e

V1	V2
a | c
b | a
b | d
c | d
d | a
d | e
Semi-Naïve evaluation - 4

Initially:
R = Φ

Iteration 1:
R = E = R1 (say)
ΔR1 = R1

Iteration 2:
R = R1 ∪
E ◦ ΔR1 = R2 (say)
ΔR2 = R2 − R1
ΔR2 ≠ Φ so continue

Iteration 3:
R = R2 ∪
E ◦ ΔR2 = R3 (say)
ΔR3 = R3 − R2
ΔR3 ≠ Φ so continue

Iteration 4:
R = R3 ∪
E ◦ ΔR3 = R4 (say)
ΔR4 = R4 − R3
ΔR = Φ (CHECK 😊) so STOP
Incremental View Maintenance (IVM)

- Why did the semi-naïve algorithm work?
- Because of the generic technique of Incremental “View” Maintenance (IVM)

- What is a view?
Views

• A view is like a “virtual” table
 – Defined by a query, which describes how to compute the view contents on the fly
 – DBMS stores the view definition query instead of view contents
 – Can be used in queries just like a regular table
Creating and dropping views

• Example: members of Jessica’s Circle
 – CREATE VIEW JessicaCircle AS
 SELECT * FROM User
 WHERE uid IN (SELECT uid FROM Member
 WHERE gid = 'jes');

 – Tables used in defining a view are called “base tables”
 • User and Member above

• To drop a view
 – DROP VIEW JessicaCircle;
Using views in queries

• Example: find the average popularity of members in Jessica’s Circle

 – SELECT AVG(pop) FROM JessicaCircle;

 – To process the query, replace the reference to the view by its definition

 – SELECT AVG(pop)
 FROM (SELECT * FROM User
 WHERE uid IN
 (SELECT uid FROM Member
 WHERE gid = 'jes'))
 AS JessicaCircle;
Why use views?

• To hide data from users
• To hide complexity from users

• Logical data independence
 – If applications deal with views, we can change the underlying schema without affecting applications

• To provide a uniform interface for different implementations or sources

☞ Real database applications use tons of views
Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see views as tables

• Goal: modify the base tables such that the modification would appear to have been accomplished on the view
A simple case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;
An impossible case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser
VALUES(987, 0.3);

• No matter what we do on User, the inserted row will not be in PopularUser
A case with too many possibilities

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

– Note that you can rename columns in view definition

UPDATE AveragePop SET pop = 0.5;

• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower Jessica’s pop?
More or less just single-table selection queries
 – No join
 – No aggregation
 – No subqueries
 – Other restrictions like “default/ no NOT NULL” values for attributes that are projected out in the view
 • so that they can be extended with valid/NULL values in the base table

Arguably somewhat restrictive

Still might get it wrong in some cases
 – See the slide titled “An impossible case”
 – Adding `WITH CHECK OPTION` to the end of the view definition will make DBMS reject such modifications
INSTEAD OF triggers for views

CREATE TRIGGER AdjustAveragePop

INSTEAD OF UPDATE ON AveragePop

REFERENCING OLD ROW AS o,
NEW ROW AS n

FOR EACH ROW

UPDATE User

SET pop = pop + (n.pop - o.pop);

Not covered in detail in this class
Incremental View Maintenance (IVM)

- Why did the semi-naïve algorithm work?
- Because of the generic technique of Incremental View Maintenance (IVM)

- Suppose you have
 - a database $D = (R_1, R_2, R_3)$
 - a query Q that gives answer $Q(D)$
 - $D = (R_1, R_2, R_3)$ gets updated to $D' = (R_1', R_2', R_3')$
 - e.g. $R_1' = R_1 \cup \Delta R_1$ (insertion), $R_2' = R_2 - \Delta R_1$ (deletion) etc.
Incremental View Maintenance (IVM)

• Why did the semi-naïve algorithm work?
• Because of the generic technique of Incremental View Maintenance (IVM)

• Suppose you have
 – a database \(D = (R_1, R_2, R_3) \)
 – a query \(Q \) that gives answer \(Q(D) \)
 – \(D = (R_1, R_2, R_3) \) gets updated to \(D' = (R_1', R_2', R_3') \)
 – e.g. \(R_1' = R_1 \cup \Delta R_1 \) (insertion), \(R_2' = R_2 - \Delta R_1 \) (deletion) etc.

• IVM: Can you compute \(Q(D') \) using \(Q(D) \) and \(\Delta R_1, \Delta R_2, \Delta R_3 \) without computing it from scratch (i.e. do not rerun the query \(Q \))?
IVM Example: Selection

- \(\sigma_{V_1=b} (R \cup \Delta R) = \sigma_{V_1=b} R \cup \sigma_{V_1=b} \Delta R \)
- It suffices to apply the selection condition only on \(\Delta R \)
 - and include with the original solution
IVM Example: Projection

- $\pi_{V_1} (R \cup \Delta R) = \pi_{V_1} R \cup \pi_{V_1} \Delta R$
- It suffices to apply the projection condition only on ΔR
 - and include with the original solution
IVM Example: Join

\[(R \cup \Delta R) \bow none (S \cup \Delta S) = (R \bow none S) \cup (R \bow none \Delta S) \cup (\Delta R \bow none S) \cup (\Delta R \bow none \Delta S)\]
IVM for Linear Datalog Rule

\[
\begin{array}{ccc}
A & B & \Delta R \\
a1 & b1 & \\
a2 & b2 & \\
a3 & b1 & \\
\end{array}
\quad \bowtie
\quad \begin{array}{ccc}
B & C \\
b1 & c1 & \\
\end{array}
\end{array}
\]

\[
\begin{array}{ccc}
A & B & C \\
a1 & b1 & c1 \\
\end{array}
\]

\[
(R \cup \Delta R) \bowtie (S \cup \Delta S) = (R \bowtie S) \cup (R \bowtie \Delta S) \cup (\Delta R \bowtie S) \cup (\Delta R \bowtie \Delta S)
\]

- \(R(x, y) :- E(x, z), R(z, y) \)
 - i.e. \(R_{\text{new}} = E \bowtie R \)
- But \(E \) is EDB
 - \(\Delta E = \emptyset \)
- Therefore,
 \(E \bowtie (R \cup \Delta R) = (E \bowtie R) \cup (E \bowtie \Delta R) \)
- It suffices to join with the difference \(\Delta R \) and include in the result in the previous round \(E \bowtie R \)
- Advantage of having “linear rule”
Unsafe/Safe Datalog Rules

Find drinkers who like beer “BestBeer”

\[Q(x) : \neg \text{Likes}(x, \text{“BestBeer”}) \]

Find drinkers who DO NOT like beer “BestBeer”

\[Q(x) : \neg \text{Likes}(x, \text{“BestBeer”}) \]

• What is the problem with this rule?
• What should this rule return?
 – names of all drinkers in the world?
 – names of all drinkers in the USA?
 – names of all drinkers in Durham?

Another Problem with Negation in Datalog Rules

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)
Find drinkers who like beer “BestBeer”

\[Q(x) :\text{Likes}(x, \text{“BestBeer”}) \]

Find drinkers who DO NOT like beer “BestBeer”

\[Q(x) :\neg\text{Likes}(x, \text{“BestBeer”}) \]

- What is the problem with this rule?
- Dependent on “domain” of drinkers
 - domain-dependent
 - infinite answers possible too..
 - keep generating “names”
 - Unsafe rule

Domain-dependency is bad
Find drinkers who like beer “BestBeer”

\[Q(x) :\neg \text{Likes}(x, \text{"BestBeer"}) \]

Find drinkers who DO NOT like beer “BestBeer”

\[Q(x) : - \text{Likes}(x, \text{"BestBeer"}) \]

• Solution:

• Restrict to “active domain” of drinkers from the input Likes (or Frequents) relation
 – “domain-independence” – same finite answer always

• Becomes a “safe rule”

\[Q(x) : - \text{Likes}(x, y), \neg \text{Likes}(x, \text{"BestBeer"}) \]