
Relational
Model and Algebra

Introduction to Databases
CompSci 316 Fall 2019

Announcements (Wed. Aug. 28)
• Sign up for Piazza, NOW!
• Gradiance RA Exercise assigned; due in a week

• See “Help/Getting Started with Gradiance” of the course website

• Homework 1 posted today; due in 2½ weeks
• See “Help/Submitting Non-Gradiance Work” for instructions on

Gradescope

• Set up VM (virtual machine)
• See “Help/VM-related” for instructions
• Google Cloud coupon email sent

• Check Sakai email archive for any missed announcements
• I don’t have office hours today—make a (private) post on

Piazza if there’s something urgent
• TA/UTA office hours to be posted soon

2

Edgar F. Codd (1923-2003)

• Pilot in the Royal Air Force in WW2

• Inventor of the relational model
and algebra while at IBM

• Turing Award, 1981

3

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg

Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
• Set-valued attributes are not allowed

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

• Two tuples are duplicates if they agree on all attributes

FSimplicity is a virtue!

4

Example
5

Ordering of rows doesn’t matter
(even though output is
always in some order)

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User
Group

Member

Schema vs. instance

• Schema (metadata)
• Specifies the logical structure of data
• Is defined at setup time
• Rarely changes

• Instance
• Represents the data content
• Changes rapidly, but always conforms to the schema

FCompare to types vs. collections of objects of
these types in a programming language

6

Example

• Schema
• User (uid int, name string, age int, pop float)
• Group (gid string, name string)
• Member (uid int, gid string)

• Instance
• User: {〈142, Bart, 10, 0.9〉, 〈857, Milhouse, 10, 0.2〉, …}
• Group: {〈abc, Book Club〉, 〈gov, Student Government〉, …}
• Member: {〈142, dps〉, 〈123, gov〉, …}

7

Relational algebra

A language for querying relational data
based on “operators”

8

RelOp

RelOp

• Core operators:
• Selection, projection, cross product, union, difference,

and renaming

• Additional, derived operators:
• Join, natural join, intersection, etc.

• Compose operators to make complex queries

Selection

• Input: a table !
• Notation: "#!
• $ is called a selection condition (or predicate)

• Purpose: filter rows according to some criteria
• Output: same columns as !, but only rows or ! that

satisfy $

9

Selection example

• Users with popularity higher than 0.5
!"#"$%.'()*+

10

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

… … … …

!"#"$%.'

More on selection

• Selection condition can include any column of !,
constants, comparison (=, ≤, etc.) and Boolean
connectives (∧: and, ∨: or, ¬: not)
• Example: users with popularity at least 0.9 and age

under 10 or above 12
'()(*+.- ∧ ./012+ ∨ ./0324 5678

• You must be able to evaluate the condition over
each single row of the input table!
• Example: the most popular user

'()(* 090:; ()(<= >?0: 5678

11

WRONG!

Projection

• Input: a table !
• Notation: "#!
• $ is a list of columns in !

• Purpose: output chosen columns
• Output: same rows, but only the columns in $

12

Projection example

• IDs and names of all users
!"#$,&'() *+,-

13

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

!"#$,&'()

uid name

142 Bart

123 Milhouse

857 Lisa

456 Ralph

… …

More on projection

• Duplicate output rows are removed (by definition)
• Example: user ages

!"#$ %&'(

14

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

!"#$

age

10

10

8

8

…

age

10

8

…

Cross product

• Input: two tables ! and "
• Natation: !×"
• Purpose: pairs rows from two tables
• Output: for each row $ in ! and each % in ", output

a row $% (concatenation of $ and %)

15

Cross product example

!"#$×&#'(#$

16

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …
×

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

A note on column ordering

• Ordering of columns is unimportant as far as
contents are concerned

• So cross product is commutative, i.e., for any ! and
", !×" = "×! (up to the ordering of columns)

17

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid gid uid name age pop

123 gov 123 Milhouse 10 0.2

857 abc 123 Milhouse 10 0.2

857 gov 123 Milhouse 10 0.2

123 gov 857 Lisa 8 0.7

857 abc 857 Lisa 8 0.7

857 gov 857 Lisa 8 0.7

… … … … … …

=

Derived operator: join

(A.k.a. “theta-join”)

• Input: two tables ! and "
• Notation: ! ⋈$ "
• % is called a join condition (or predicate)

• Purpose: relate rows from two tables
according to some criteria
• Output: for each row & in ! and each row ' in
", output a row &' if & and ' satisfy %
• Shorthand for ($!×"

18

⋈ "#$%.'()*
+$,-$%.'()

Join example

• Info about users, plus IDs of their groups
./01 ⋈"#$%.'()*+$,-$%.'() 203401

19

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …×⋈ "#$%.'()*
+$,-$%.'()

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

Prefix a column reference
with table name and “.” to
disambiguate identically named
columns from different tables

Derived operator: natural join

• Input: two tables ! and "
• Notation: ! ⋈ "
• Purpose: relate rows from two tables, and
• Enforce equality between identically named columns
• Eliminate one copy of identically named columns

• Shorthand for $% ! ⋈& " , where
• ' equates each pair of columns common to ! and "
• (is the union of column names from ! and " (with

duplicate columns removed)

20

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop gid

123 Milhouse 10 0.2 gov

857 Lisa 8 0.7 abc

857 Lisa 8 0.7 gov

… … … … …

Natural join example
21

!"#$ ⋈ &#'(#$ = *? !"#$ ⋈? &#'(#$
= *,-.,0123,143,565,4-. !"#$ ⋈ 7839.,-.;

<32=39.,-.
&#'(#$

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …

⋈⋈ 7839.,-.;
<32=39.,-.⋈

Union

• Input: two tables ! and "
• Notation: ! ∪ "
• ! and " must have identical schema

• Output:
• Has the same schema as ! and "
• Contains all rows in ! and all rows in " (with duplicate

rows removed)

22

Difference

• Input: two tables ! and "
• Notation: ! − "
• ! and " must have identical schema

• Output:
• Has the same schema as ! and "
• Contains all rows in ! that are not in "

23

Derived operator: intersection

• Input: two tables ! and "
• Notation: ! ∩ "
• ! and " must have identical schema

• Output:
• Has the same schema as ! and "
• Contains all rows that are in both ! and "

• Shorthand for
• Also equivalent to " − " − !
• And to ! ⋈ "

24

! − ! − "

Renaming

• Input: a table !
• Notation: "# !, " $%,$',… !, or "# $%,$',… !
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as !, but called

differently
• Used to
• Avoid confusion caused by identical column names
• Create identical column names for natural joins

• As with all other relational operators, it doesn’t
modify the database
• Think of the renamed table as a copy of the original

25

Renaming example

• IDs of users who belong to at least two groups
!"#$"% ⋈? !"#$"%

()*+ !"#$"% ⋈,-./-0.)*+2,-./-0.)*+ ∧
,-./-0.4*+5,-./-0.4*+

!"#$"%

()*+6
7)*+6,4*+6 !"#$"%
⋈)*+62)*+9 ∧ 4*+654*+9
7)*+9,4*+9 !"#$"%

26

WRONG!

Expression tree notation
27

! "#$%,'#$% ! "#$(,'#$(

)*+,*-)*+,*-

⋈"#$%/"#$(∧ '#$%1'#$(

2"#$%

Summary of core operators

• Selection: !"#
• Projection: $%#
• Cross product: #×'
• Union: # ∪ '
• Difference: # − '
• Renaming: *+ ,-,,/,… #
• Does not really add “processing” power

28

Summary of derived operators

• Join: ! ⋈# $
• Natural join: ! ⋈ $
• Intersection: ! ∩ $

• Many more
• Semijoin, anti-semijoin, quotient, …

29

An exercise

• Names of users in Lisa’s groups

30

Users in
Lisa’s groups

Their names

Lisa’s groups

Who’s Lisa?

Writing a query bottom-up:

Another exercise

• IDs of groups that Lisa doesn’t belong to

31

IDs of Lisa’s groupsAll group IDs
−

"#$%
&'()*

+,-.,'
/0,'

⋈
234567"9$:4"

"#$%

Writing a query top-down:

A trickier exercise

• Who are the most popular?

32

A deeper question:
When (and why) is “−” needed?

Monotone operators

• If some old output rows may need to be removed
• Then the operator is non-monotone

• Otherwise the operator is monotone
• That is, old output rows always remain “correct” when

more rows are added to the input

• Formally, for a monotone operator !":
⊆ #% implies !" # ⊆ !" #% for any #, #%

33

RelOp
Add more rows

to the input...

What happens
to the output?

Classification of relational operators

• Selection: !"#
• Projection: $%#
• Cross product: #×'
• Join: # ⋈" '
• Natural join: # ⋈ '
• Union: # ∪ '
• Difference: # − '
• Intersection: # ∩ '

34

Monotone

Why is “−” needed for “highest”?

• Composition of monotone operators produces a
monotone query
• Old output rows remain “correct” when more rows are

added to the input

• Is the “highest” query monotone?

35

Why do we need core operator !?

• Difference
• The only non-monotone operator

• Projection

• Cross product

• Union

• Selection?
• Homework problem

36

Extensions to relational algebra

• Duplicate handling (“bag algebra”)
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow

new column values to be computed

FAll these will come up when we talk about SQL
FBut for now we will stick to standard relational

algebra without these extensions

37

Why is r.a. a good query language?

• Simple
• A small set of core operators
• Semantics are easy to grasp

• Declarative?
• Yes, compared with older languages like CODASYL
• Though operators do look somewhat “procedural”

• Complete?
• With respect to what?

38

Relational calculus

• !. !#$! ∈ &'() ∧
¬ ∃!- ∈ &'(): !. /0/ < !-. /0/ }, or

• !. !#$! ∈ &'() ∧
∀!- ∈ &'(): !. /0/ ≥ !-. /0/ }

• Relational algebra = “safe” relational calculus
• Every query expressible as a safe relational calculus

query is also expressible as a relational algebra query
• And vice versa

• Example of an “unsafe” relational calculus query
• !. 567(¬ ! ∈ &'()
• Cannot evaluate it just by looking at the database

39

Turing machine

• A conceptual device that can
execute any computer algorithm
• Approximates what general-

purpose programming languages
can do
• E.g., Python, Java, C++, …

FSo how does relational algebra compare with a
Turing machine?

40

http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

Alan Turing (1912-1954)

Limits of relational algebra

• Relational algebra has no recursion
• Example: given relation Friend(uid1, uid2), who can Bart

reach in his social network with any number of hops?
• Writing this query in r.a. is impossible!

• So r.a. is not as powerful as general-purpose languages

• But why not?
• Optimization becomes undecidable
FSimplicity is empowering
• Besides, you can always implement it at the application

level, and recursion is added to SQL nevertheless!

41

