Relational Database Design:
E/R-Relational Translation

Introduction to Databases
CompSci 316 Fall 2019

E’ DUKE
COMPUTER SCIENCE

Announcements (Wed. Sep. 4)

 Office hours finalized
* See website “Help” section

* Gradiance RA exercise due today

* No late submissions, but we will automatically drop your
lowest two scores in the semester

* Gradiance ER exercise assign today; due in a week

* Homework 1 due in 1% week
* Please please please start early

* Project description to be posted next week

Announcements (Wed. Sep. 4)

* An experimental RA debugger for Homework 1
Problem 1
* Grew out of research from Zhengjie Miao

* You are not required to use it,
but the bonus is that

* It uses the same (hidden) test db as the autograder

* If your query is wrong, it will “explain” how, with a very simple
example db (with tuples drawn from the hidden test db)

Database design steps: review

* Understand the real-world domain being modeled
» Specify it using a database design model (e.g., E/R)

* Translate specification to the data model of DBMS
(e.g., relational)

e Create DBMS schema

@ Next: translating E/R design to relational schema

E/R model: review

* Entity sets
* Keys
* Weak entity sets

* Relationship sets
* Attributes on relationships
* Multiplicity
* Roles

* Binary versus n-ary relationships

* Modeling n-ary relationships with weak entity sets and binary
relationships

ISA relationships

Translating entity sets

* An entity set translates directly to a table
* Attributes — columns
* Key attributes — key columns

<>

romDate

Translating weak entity sets

 Remember the “borrowed’ key attributes
 Watch out for attribute name conflicts

Translating relationship sets

* Arelationship set translates to a table
* Keys of connected entity sets — columns
* Attributes of the relationship set (if any) = columns
* Multiplicity of the relationship set determines the key of

the table

Users

Groups

gid

More examples

parent

Users

IsParentO

Users

membe

initiator

child

r

IsMemberO Groups

Parent (parent_uid, child uid)

Member (uid, initiator uid, gid)

Translating double diamonds?

* Recall that a double-diamond (supporting)

relationship set connects a weak entity set to
another entity set

* No need to translate because the relationship is
implicit in the weak entity set’s translation

Rooms . Buildings

Seats

o

is subsumed by
Room (building name, room _number, capacity)

g

Translating subclasses & ISA: approach

approach ()

* An entity is represented in the table for each subclass to
which it belongs

* A table includes only the attributes directly attached to
the corresponding entity set, plus the inherited key

@

romDate

Users

Groups

Group (gid, name)
€ User (uid, name)
Member (uid, gid, from date)

(142, Bart)

Translating subclasses & ISA: approach

approach ()

* An entity is only represented in one table (the most
specific entity set to which the entity belongs)

* Atable includes the attributes attached to the
corresponding entity set, plus all inherited attributes

@

romDate

Users Groups

Group (gid, name)
(142, Bart) € User (uid, name)
Member (uid, gid, from date)

Translating subclasses & ISA: approach 3

approach ()

* One relation for the root entity set, with all attributes found in
the network of subclasses (plus a “type” attribute when
needed)

* Use aspecial NULL value in columns that are not relevant for

a particular entity
G

romDate

Users Groups

Group (gid, name)
User (uid, name,)
Member (uid, gid, from date)

(142, Bart

Comparison of three approaches

* Entity-in-all-superclasses

* User (uid, name), PaidUser (uid, avatar)

* Pro: All users are found in one table

* Con: Attributes of paid users are scattered in different tables
* Entity-in-most-specific-class

* User (uid, name), PaidUser (uid, name, avatar)

* Pro: All attributes of paid users are found in one table

* Con: Users are scattered in different tables

* All-entities-in-one-table
* User (uid, [type,]name, avatar)

* Pro: Everything is in one table
* Con:Lots of NULL’s; complicated if class hierarchy is complex

A complete example

Trains LocalTrainStops

PN
ISA

\

LocalTrains

@

—<>a Stations

A

LocalStations

/

ExpressTrains

ExpressStations

4
Train (number, engineer)

1\

LocalTrain (number)

ExpressTrainStops

ExpressTrain (number)

LocalTrainStop (local_train_number, time)

Station (name, address) LocalTrainStopsAtStation (local_train_number, time, station _name)

LocalStation (name) ExpressTrainStop (express_train_number, time)

ExpressStation (name) ExpressTrainStopsAtStation (express_train_number, time,
express_station_name)

16

Simplifications and refinements

Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local train_number, station name, time)
ExpressTrainStop (express_train_number, express station name, time)

e Eliminate LocalTrain table

* Redundant: can be computed as
Tnumper I Tain) — ExpressTrain

* Slightly harder to check that local train number is
indeed a local train number

* Eliminate LocalStation table
* It can be computed as m, mper (Station) — ExpressStation

An alternative design

Train (number, engineer, type)
Station (name, address, type)

TrainStop (train_number, station name, time)

* Encode the type of train/station as a column rather
than creating subclasses

* What about the following constraints?
* Type must be either “local” or “express”
* Express trains only stop at express stations
®"They can be expressed/declared explicitly as database
constraints in SQL (as we will see later in course)

* Arguably a better design because it is simpler!

17

18

Design principles

* KISS
* Keep It Simple, Stupid

* Avoid redundancy

* Redundancy wastes space, complicates modifications,
promotes inconsistency

* Capture essential constraints, but don’t introduce
unnecessary restrictions

* Use your common sense

* Warning: mechanical translation procedures given in this
lecture are no substitute for your own judgment

http://ungenius.files.wordpress.com/2010/03/thehomer. jpg

