Relational Database Design Theory

Introduction to Databases CompSci 316 Fall 2019

Announcements (Mon. Sep. 9)

- Gradiance ER due this Wednesday
- Gradiance FD and MVD assigned
- Homework 1 due next Monday (11:59pm)
 - RA debugger for Problem 1 available at https://ratest.cs.duke.edu/
- Course project description posted
 - Read it!
 - "Mixer" in a week and a half
 - Milestone 1 right after fall break
 - Teamwork required: 5 people per team on average

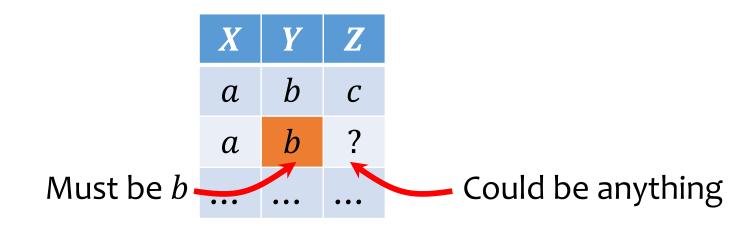
Motivation

uid	uname	gid
142	Bart	dps
123	Milhouse	gov
857	Lisa	abc
857	Lisa	gov
456	Ralph	abc
456	Ralph	gov
•••	•••	•••

- Why is UserGroup (<u>uid</u>, uname, <u>gid</u>) a bad design?
 - It has redundancy—user name is recorded multiple times, once for each group that a user belongs to
 - Leads to update, insertion, deletion anomalies
- Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \to Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y



FD examples

Address (street_address, city, state, zip)

- street_address, city, state → zip
- $zip \rightarrow city$, state
- zip, state \rightarrow zip?
 - This is a trivial FD
 - Trivial FD: LHS ⊇ RHS
- $zip \rightarrow state, zip$?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Redefining "keys" using FD's

A set of attributes *K* is a key for a relation *R* if

- $K \rightarrow \text{all (other)}$ attributes of R
 - That is, K is a "super key"
- No proper subset of K satisfies the above condition
 - That is, *K* is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F} ?
 - Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- Is *K* a key of *R*?
 - What are all the keys of *R*?

Attribute closure

- Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, ...\}$ functionally determined by Z (that is, $Z \to A_1 A_2$...)
- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
Assume that there is a 1-1 correspondence between
our users and Twitter accounts

- uid → uname, twitterid
- twitterid → uid
- uid, gid \rightarrow from Date

Not a good design, and we will see why shortly

Example of computing closure

- {gid, twitterid}⁺ = ?
- twitterid → uid
 - Add uid
 - Closure grows to { gid, twitterid, uid }
- $uid \rightarrow uname$, twitterid
 - Add uname, twitterid
 - Closure grows to { gid, twitterid, uid, uname }
- uid, gid \rightarrow from Date
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup

\mathcal{F} includes: $uid \rightarrow uname$, twitterid $twitterid \rightarrow uid$ uid, $gid \rightarrow fromDate$

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD's

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Using these rules, you can prove or disprove an FD given a set of FDs

Non-key FD's

- Consider a non-trivial FD X → Y where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

X	Y	Z
a	b	c_1
a	b	c_2
•••	•••	•••

That a should be mapped to b is recorded multiple times: redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• uid \rightarrow uname, twitterid

(... plus other FD's)

uid	uname	twitterid	gid	fromDate
142	Bart	@BartJSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	@lisasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01
	•••		•••	

Decomposition

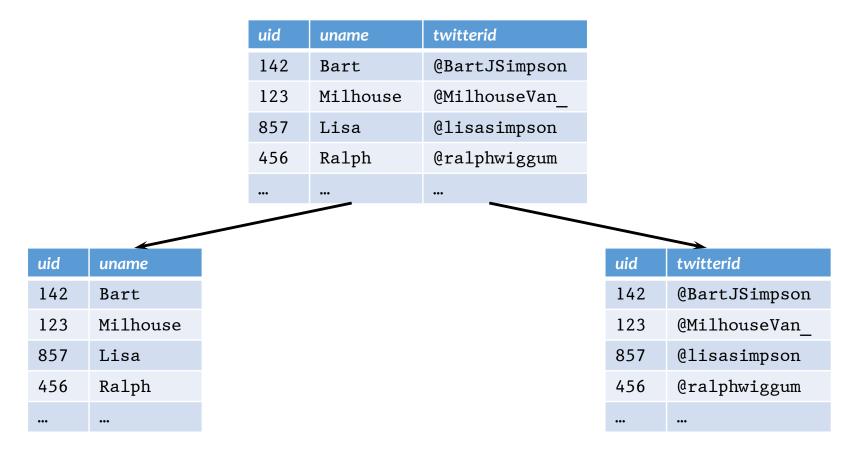
uid	uname	twitterid	gid	fromDate
142	Bart	@BartJSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	@lisasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01
	•••		•••	

uid	uname	twitterid
142	Bart	@BartJSimpson
123	Milhouse	@MilhouseVan_
857	Lisa	@lisasimpson
456	Ralph	@ralphwiggum
•••	•••	•••

uid	gid	fromDate
142	dps	1987-04-19
123	gov	1989-12-17
857	abc	1987-04-19
857	gov	1988-09-01
456	abc	1991-04-25
456	gov	1992-09-01
•••	•••	•••

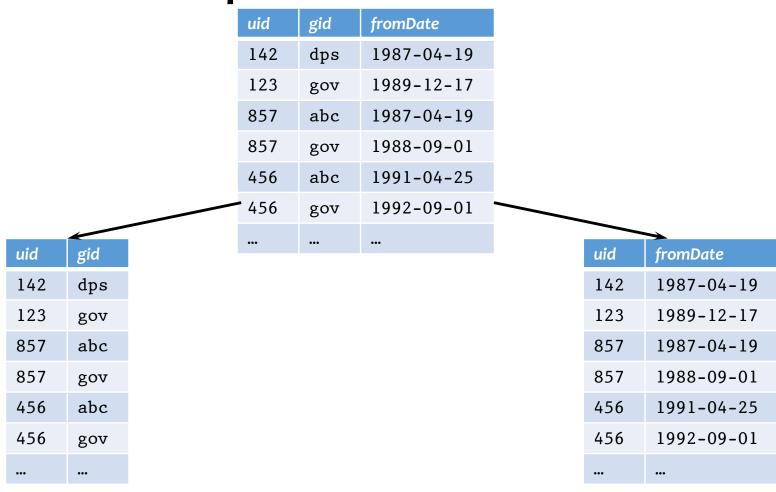
- Eliminates redundancy
- To get back to the original relation: ⋈

Unnecessary decomposition



- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and *uid* is stored twice!)

Bad decomposition



- Association between gid and fromDate is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

uid	gid	fromDate
142	dps	1987-04-19
123	gov	1989-12-17
857	abc	1988-09-01
857	gov	1987-04-19
456	abc	1991-04-25
456	gov	1992-09-01
•••	•••	

No way to tell which is the original relation

uid	fromDate
142	1987-04-19
123	1989-12-17
857	1987-04-19
857	1988-09-01
456	1991-04-25
456	1992-09-01
	•••

uid	gid
142	dps
123	gov
857	abc
857	gov
456	abc
456	gov

Questions about decomposition

When to decompose

 How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \to Y$ in R, X is a super key
 - That is, all FDs follow from "key → other attributes"
- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

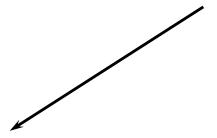
- Find a BCNF violation
 - That is, a non-trivial FD X → Y in R where X is not a super key of R
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

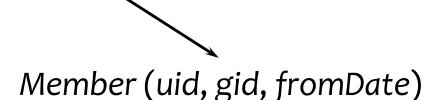
BCNF violation: uid \rightarrow uname, twitterid



User (uid, uname, twitterid)

uid \rightarrow uname, twitterid twitterid \rightarrow uid

BCNF



uid, gid \rightarrow from Date

BCNF

Another example

uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid \rightarrow uid UserId (twitterid, uid) **BCNF** UserJoinsGroup' (twitterid, uname, gid, fromDate) twitterid \rightarrow uname twitterid, gid \rightarrow from Date BCNF violation: twitterid → uname UserName (twitterid, uname) Member (twitterid, gid, fromDate) **BCNF** BCNF

Why is BCNF decomposition lossless

Given non-trivial $X \to Y$ in R where X is not a super key of R, need to prove:

Anything we project always comes back in the join:

$$R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$

- Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:

$$R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$

• Proof will make use of the fact that $X \to Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

BCNF = no redundancy?

- User (uid, gid, place)
 - A user can belong to multiple groups
 - A user can register places she's visited
 - Groups and places have nothing to do with other
 - FD's?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

uid	gid	place
142	dps	Springfield
142	dps	Australia
456	abc	Springfield
456	abc	Morocco
456	gov	Springfield
456	gov	Morocco
•••	•••	

Multivalued dependencies

- A multivalued dependency (MVD) has the form
 X → Y, where X and Y are sets of attributes in a
 relation R
- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R

X	Y	Z
a	b_1	c_1
a	b_2	c_2
a	b_2	c_1
a	b_1	c_2
• • •	•••	• • •

MVD examples

User (uid, gid, place)

- uid → gid
- uid → place
 - Intuition: given uid, gid and place are "independent"
- uid, gid → place
 - Trivial: LHS U RHS = all attributes of R
- uid, gid → uid
 - Trivial: LHS ⊇ RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation: If $X \rightarrow Y$, then $X \rightarrow attrs(R) - X - Y$
- MVD augmentation: If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z Y$
- Replication (FD is MVD): If $X \to Y$, then $X \to Y$ Try proving things using these!?
- Coalescence: If $X \to Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \to Z$, then $X \to Z$

An elegant solution: chase

- Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- Procedure
 - Start with the premise of d, and treat them as "seed" tuples in a relation
 - Apply the given dependencies in $\mathcal D$ repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

• In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have: A B C D a b_1 c_1 d_1 a b_2 c_2 d_2 $A \Rightarrow B \quad \begin{array}{c|ccc} a & b_2 & c_1 & d_1 \\ \hline a & b_1 & c_2 & d_2 \end{array}$ $B \rightarrow C \quad \begin{array}{c|cccc} a & b_2 & c_1 & d_2 \\ \hline a & b_2 & c_2 & d_1 \end{array}$ $B \twoheadrightarrow C \quad \begin{array}{c|cccc} a & b_1 & c_2 & d_1 \\ \hline a & b_1 & c_1 & d_2 \end{array}$

Another proof by chase

• In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have: $egin{array}{c|ccccc} A & B & C & D \\ \hline a & b_1 & c_1 & d_1 \\ \hline a & b_2 & c_2 & d_2 \\ \hline \end{array}$

Need: $c_1 = c_2$

$$A \rightarrow B$$
 $b_1 = b_2$ $B \rightarrow C$ $c_1 = c_2$

In general, with both MVD's and FD's, chase can generate both new tuples and new equalities

Counterexample by chase

• In R(A, B, C, D), does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

Have: $egin{array}{c|cccc} A & B & C & D \\ \hline a & b_1 & c_1 & d_1 \\ \hline a & b_2 & c_2 & d_2 \\ \hline A \twoheadrightarrow BC & a & b_1 & c_1 & d_2 \\ \hline a & b_1 & c_1 & d_2 \\ \hline \end{array}$

Need: $b_1 = b_2$ \$

Counterexample!

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD's and MVD's follow from "key → other attributes" (i.e., no MVD's and no FD's besides key functional dependencies)
- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

User (uid, gid, place)

4NF violation: uid → gid

uid	gid	place
142	dps	Springfield
142	dps	Australia
456	abc	Springfield
456	abc	Morocco
456	gov	Springfield
456	gov	Morocco
•••	•••	

Member (uid, gid)

4NF

uid	gid
142	dps
456	abc
456	gov
•••	

Visited (uid, place)

4NF

uid	place
142	Springfield
142	Australia
456	Springfield
456	Morocco

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key,
 the whole key,
 and nothing but the key!
 - You could have multiple keys though
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic