
SQL: Part I
Introduction to Databases

CompSci 316 Fall 2019

Announcements (Wed. Sep. 11)

• Gradiance ER due today, FD next Monday, and MVD
next Wednesday
• Homework 1 due Monday 11:59pm
• There is a FAQ for Homework 1 on Piazza

• Homework 2 assigned
• Project mixer next Wednesday in class
• Please send me your slide(s) by next Monday if you want

to make a pitch in front of the whole class!

2

SQL

• SQL: Structured Query Language
• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS

• A brief history
• IBM System R
• ANSI SQL89
• ANSI SQL92 (SQL2)
• ANSI SQL99 (SQL3)
• ANSI SQL 2003 (added OLAP, XML, etc.)
• ANSI SQL 2006 (added more XML)
• ANSI SQL 2008, …

3

Creating and dropping tables

• CREATE TABLE table_name
(…, column_name column_type, …);
• DROP TABLE table_name;
• Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));
drop table Member;
drop table Group;
drop table User;
-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...Group... is
-- equivalent to ...GROUP...).

4

Basic queries: SFW statement

• SELECT !", !#, …, !$
FROM %", %#, …, %&
WHERE '()*+,+();
• Also called an SPJ (select-project-join) query
• Corresponds to (but not really equivalent to)

relational algebra query:
-./,.1,…,.3 456$78986$ %"×%#×⋯×%&

5

Example: reading a table

• SELECT * FROM User;
• Single-table query, so no cross product here
• WHERE clause is optional
• * is a short hand for “all columns”

6

Example: selection and projection

• Name of users under 18
• SELECT name FROM User WHERE age<18;

• When was Lisa born?
• SELECT 2019-age
FROM User
WHERE name = 'Lisa';
• SELECT list can contain expressions

• Can also use built-in functions such as SUBSTR, ABS, etc.

• String literals (case sensitive) are enclosed in single
quotes

7

Example: join

• ID’s and names of groups with a user whose name
contains “Simpson”
• SELECT Group.gid, Group.name
FROM User, Member, Group
WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND User.name LIKE '%Simpson%';
• LIKE matches a string against a pattern

• % matches any sequence of zero or more characters
• Okay to omit table_name in table_name.column_name if
column_name is unique

8

Example: rename

• ID’s of all pairs of users that belong to one group
• Relational algebra query:
!"#.%&',").%&'
*"#+,-.,/ ⋈"#.1&'2").1&' ∧"#.%&'4").%&' *")+,-.,/

• SQL:
SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;
• AS keyword is completely optional

9

A more complicated example

• Names of all groups that Lisa and Ralph are both in

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g
WHERE u1.name = 'Lisa' AND u2.name = 'Ralph'
AND u1.uid = m1.uid AND u2.uid = m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

Tip: Write the FROM clause first, then WHERE, and
then SELECT

10

Why SFW statements?

• Out of many possible ways of structuring SQL
statements, why did the designers choose
SELECT-FROM-WHERE?
• A large number of queries can be written using only

selection, projection, and cross product (or join)
• Any query that uses only these operators can be written

in a canonical form: !" #$ %&×⋯×%)
• Example: !*.,,../ % ⋈$1 2 ⋈$3 !4.5#$67= !*.,,../,4.5#$1∧$3∧$6 %×2×7

• SELECT-FROM-WHERE captures this canonical form

11

Set versus bag semantics

• Set
• No duplicates
• Relational model and algebra use set semantics

• Bag
• Duplicates allowed
• Number of duplicates is significant
• SQL uses bag semantics by default

12

Set versus bag example
13

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Member

gid

dps

gov

abc

gov

abc

gov

…

gid

dps

gov

abc

…

!"#$%&'(&)

SELECT gid
FROM Member;

A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?
• !"#$%&'(
• SELECT age FROM User;
• The first query just returns __________________
• The second query returns ___________________

• Besides, SQL provides the option of set semantics
with DISTINCT keyword

14

Forcing set semantics

• ID’s of all pairs of users that belong to one group
• SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;
• Say Lisa and Ralph are in both the book club and the student

government
• SELECT DISTINCT m1.uid AS uid1, m2.uid
AS uid2 …
• With DISTINCT, all duplicate (uid1, uid2) pairs are removed

from the output

15

Semantics of SFW

• SELECT [DISTINCT] !", !#, …, !$
FROM %", %#, …, %&
WHERE '()*+,+();
• For each ," in %":

For each ,# in %#: … …
For each ,& in %&:

If '()*+,+() is true over ,", ,#, …, ,&:
Compute and output !", !#, …, !$ as a row

If DISTINCT is present
Eliminate duplicate rows in output

• ,", ,#, …, ,& are often called tuple variables

16

SQL set and bag operations

• UNION, EXCEPT, INTERSECT
• Set semantics

• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

• Exactly like set ∪, −, and ∩ in relational algebra

• UNION ALL, EXCEPT ALL, INTERSECT ALL
• Bag semantics
• Think of each row as having an implicit count (the

number of times it appears in the table)
• Bag union: sum up the counts from two tables
• Bag difference: proper-subtract the two counts
• Bag intersection: take the minimum of the two counts

17

Examples of bag operations
18

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)
• (SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);
• Users who:

• (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);
• Users who:

19

SQL features covered so far

• SELECT-FROM-WHERE statements (select-project-
join queries)
• Set and bag operations

FNext: how to nest SQL queries

20

Table subqueries

• Use query result as a table
• In set and bag operations, FROM clauses, etc.
• A way to “nest” queries

• Example: names of users who poked others more
than others poked them
• SELECT DISTINCT name
FROM User,

((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AS T

WHERE User.uid = T.uid;

21

Scalar subqueries

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart
• SELECT *
FROM User
WHERE age = (SELECT age

FROM User
WHERE name = 'Bart');

• Runtime error if subquery returns more than one row
• Under what condition will this error never occur?

• What if the subquery returns no rows?
• The answer is treated as a special value NULL, and the

comparison with NULL will fail

22

What’s Bart’s age?

IN subqueries

• ! IN ("#$%#&'() checks if ! is in the result of
"#$%#&'(
• Example: users at the same age as (some) Bart
• SELECT *
FROM User
WHERE age IN (SELECT age

FROM User
WHERE name = 'Bart');

23

What’s Bart’s age?

EXISTS subqueries

• EXISTS (!"#$"%&') checks if the result of
!"#$"%&' is non-empty
• Example: users at the same age as (some) Bart
• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

24

Semantics of subqueries

• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• For each row u in User
• Evaluate the subquery with the value of u.age
• If the result of the subquery is not empty, output u.*

• The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

25

Scoping rule of subqueries

• To find out which table a column belongs to
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if

necessary

• Use table_name.column_name notation and AS
(renaming) to avoid confusion

26

Another example

• SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

• Users who:

27

Quantified subqueries

• A quantified subquery can be used syntactically as a
value in a WHERE condition
• Universal quantification (for all):
… WHERE ! "# ALL($%&'%()*) …
• True iff for all + in the result of $%&'%()*, ! "# +

• Existential quantification (exists):
… WHERE ! "# ANY($%&'%()*) …
• True iff there exists some + in $%&'%()* result such that
! "# +

FBeware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

28

Examples of quantified subqueries

• Which users are the most popular?

• SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

• SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);
FUse NOT to negate a condition

29

More ways to get the most popular

• Which users are the most popular?

• SELECT *
FROM User AS u
WHERE NOT EXISTS

(SELECT * FROM User
WHERE pop > u.pop);

• SELECT * FROM User
WHERE uid NOT IN

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

30

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)
• But in many cases they don’t add expressive power

• Try translating other forms of subqueries into [NOT] EXISTS,
which in turn can be translated into join (and difference)
• Watch out for number of duplicates though

FNext: aggregation and grouping

31

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX
• Example: number of users under 18, and their

average popularity
• SELECT COUNT(*), AVG(pop)
FROM User
WHERE age < 18;
• COUNT(*) counts the number of rows

32

Aggregates with DISTINCT

• Example: How many users are in some group?

• SELECT COUNT(DISTINCT uid)
FROM Member;

is equivalent to:
• SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

33

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group
• SELECT age, AVG(pop)
FROM User
GROUP BY age;

34

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
• Compute FROM (×)
• Compute WHERE (")
• Compute GROUP BY: group rows according to the

values of GROUP BY columns
• Compute SELECT for each group (#)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

FNumber of groups =
number of rows in the final output

35

Example of computing GROUP BY
SELECT age, AVG(pop) FROM User GROUP BY age;

36

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group
SELECT AVG(pop) FROM User;

37

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT

expression produces only one value for each group

38

Examples of invalid queries

• SELECT uid, age
FROM User GROUP BY age;
• Recall there is one output row per group
• There can be multiple uid values per group

• SELECT uid, MAX(pop) FROM User;
• Recall there is only one group for an aggregate query

with no GROUP BY clause
• There can be multiple uid values
• Wishful thinking (that the output uid value is the one

associated with the highest popularity) does NOT work
FAnother way of writing the “most popular” query?

39

WRONG!

WRONG!

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)
• SELECT … FROM … WHERE … GROUP BY …
HAVING !"#$%&%"#;
• Compute FROM (×)
• Compute WHERE (()
• Compute GROUP BY: group rows according to the values

of GROUP BY columns
• Compute HAVING (another (over the groups)
• Compute SELECT ()) for each group that passes
HAVING

40

HAVING examples

• List the average popularity for each age group with
more than a hundred users
• SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*) > 100;
• Can be written using WHERE and table subqueries

• Find average popularity for each age group over 10
• SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age > 10;
• Can be written using WHERE without table subqueries

41

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Aggregation and grouping
• More expressive power than relational algebra

FNext: ordering output rows

42

ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;
• ASC = ascending, DESC = descending
• Semantics: After SELECT list has been computed

and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

43

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)
• SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;
• ASC is the default option
• Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)
• Can use sequence numbers instead of names to refer to

output columns: ORDER BY 4 DESC, 2;

44

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Aggregation and grouping
• Ordering

FNext: NULL’s, outerjoins, data modification,
constraints, …

45

