SQL: Recursion

Introduction to Databases
CompSci 316 Fall 2019

E- DUKE
COMPUTER SCIENCE

Announcements (Wed., Sep. 25)

* Homework 1 grades released on Gradescope
* Sample solution posted in Sakai

* Today

exercise due
* Gradiance SQL Triggers/Views exercise assigned

* Monday

+ due
* Wednesday
in class
* Open-book, open-notes
« Same format as (posted in Sakai)

* In 2 weeks: due

WHAT IS IT?

RECURSION

£

http://xkcdsw.com/1105

A motivating example

Parent (parent, child)

Homer
Homer
Marge
Marge
Abe

* Example: find Bart’s ancestors

Bart
Lisa
Bart
Lisa
Homer

Abe

Ape
Abe
\
Homer Marge
=]
Bart Lisa

* “Ancestor” has a recursive definition

* X isY’s ancestor if
 XisY’s parent, or

* XisZ’s ancestorand Z is Y’s ancestor

Recursion in SQL

* SQL2 had no recursion

* You can find Bart’s parents, grandparents, great
grandparents, etc.

SELECT pl.parent AS grandparent
FROM Parent pl, Parent p2

WHERE pl.child = p2.parent

AND p2.child = 'Bart';

* But you cannot find all his ancestors with a single query

* SQL3 introduces recursion
clause
* Implemented in PostgreSQL (

)

Ancestor query in SQL3

(anc, desc)
((SELECT parent, child FROM Parent)
UNION
(SELECT al.anc, a2.desc
FROM al, a2 Define
WHERE al.desc = a2.anc)) a relation

SELECT anc recursively
FROM Ancestor
'Bart';

WHERE desc = Query using the relation
defined in WLTH clause

Fixed point of a function

* If f: D — D is afunctionfromatype D to itself, a
of f is avalue x such that f(x) = x

* Example: What is the fixed point of f(x) = x/2?
* 0,because f(0) =0/2=0
* To compute a fixed point of f
 Start with a “seed”: x « xg
« Compute f(x)
* If f(x) = x, stop; x is fixed point of f
« Otherwise, x « f(x); repeat
* Example: compute the fixed point of f(x) = x/2
* With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... = 0

“ Doesn’t always work, but happens to work for us!

Fixed point of a query

* A query q is just a function that maps an input table
to an output table, so a of gisatableT
suchthatg(T) =T

* To compute fixed point of g
 Start with an emptytable:T « 0

* Evaluate q overT
* If theresultisidentical to T, stop; T is a fixed point
* Otherwise, let T be the new result; repeat

@ Starting from @ produces the
(assuming q is monotone)

Finding ancestors

WITH RECURSIVE
Ancestor(anc, desc) AS

Cparent | cld

Homer

((SELECT parent, child FROM Parent) Homer

UNION

Marge
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2 Marge
WHERE al.desc = a2.anc)) Abe

* Think of the definition as Ancestor = q(Ancestor) Ape

Homer
anc | desc
Marge
Marge
Abe

Bart
Lisa
Bart
Lisa

Homer

Abe anc___

Bart Homer
Lisa Marge
B ——

Bart Marge
Lisa Abe
Homer Ape
Abe Abe

Abe

Ape

Bart
Lisa
Bart
Lisa
Homer
Abe
Bart

Lisa

Homer

Intuition behind fixed-point iteration

* Initially, we know nothing about ancestor-
descendent relationships

* In the first step, we deduce that parents and
children form ancestor-descendent relationships

* In each subsequent steps, we use the facts
deduced in previous steps to get more ancestor-
descendent relationships

* We stop when no new facts can be proven

Linear recursion

e With linear recursion, a recursive definition can make
only one reference to itself

* Non-linear

(anc, desc)
((SELECT parent, child FROM Parent)

UNION
(SELECT al.anc, a2.desc
FROM al, a2
WHERE al.desc = a2Z2.anc))
e Linear

(anc, desc)
((SELECT parent, child FROM Parent)

UNION
(SELECT anc, child
FROM , Parent

WHERE desc = parent))

Linear vs. non-linear recursion

* Linear recursion is easier to implement

* For linear recursion, just keep joining newly generated
Ancestor rows with Parent

* For non-linear recursion, need to join newly generated
Ancestor rows with all existing Ancestor rows

* Non-linear recursion may take fewer steps to
converge, but perform more work
* Example:a—->b—->c—>d—e
* Linear recursion takes 4 steps

* Non-linear recursion takes 3 steps
* More work: e.g., a = d has two different derivations

ttp://xkcdsw.com

Mutual recursion example

* Table Natural (n) contains 1, 2, ..., 100

 Which numbers are even/odd?

* An odd number plus 1is an even number
* An even number plus 1is an odd number
* 1is an odd number

WITH RECURSIVE (n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM))

RECURSIVE (n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION

(SELECT n FROM Natural

WHERE n = ANY(SELECT n+1 FROM)))

Semantics of WLTH

* Qand Q4,...,0,, mayreferto R4, ..., R,

e Semantics
.R{ «<®,...,R, <0

2. Evaluate @4, ..., Q,, using the current contents of R, ..., R,;:
RT®Y < Qq, .., Rp®" < Qn

3. If Rj**" # R; for some i
3.1. Ry « RTY,...,R,, <« R]I¢Y
3.2. Go to 2.

4. Compute Q using the current contents of R4, ... R,
and output the result

Computing mutual recursion

WITH RECURSIVE (n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM)),

RECURSIVE (n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION

(SELECT n FROM Natural

WHERE n = ANY(SELECT n+1 FROM)))

* Even=0,0dd =0

* Even = @, Odd = {1}

* Even = {2}, Odd = {1}

* Even = {2}, Odd = {1, 3}

* Even = {2, 4}, Odd = {1, 3}

* Even ={2, 4}, 0dd = {1, 3, 5}

Fixed points are not unique

Homer Bart

Homer Lisa

(anc, desc) Homer Bart Marge Bart
((SELECT parent, child FROM Homer Lisa Marge Lisa
Parent) Marge Bart Abe Homer
UNION Marge Lisa Ape Abe
(SELECT al.anc, aZ2.desc Abe Homer
FROM al , 22 R o Abe Bart
e e :
WHERE al.desc = a2.anc)) P bl Lisa
Ape Homer
Ape Bart
Ape Lisa

Bogus Bogus

- But if g is monotone, then
all these fixed points must contain the fixed point we
computed from fixed-point iteration starting with @

- Thus the unique fixed point is the “natural” answer

Mixing negation with recursion

* If g is non-monotone
* The fixed-point iteration may flip-flop and never converge

* There could be multiple minimal fixed points—we
wouldn’t know which one to pick as answer!

* Example: popular users (pop = 0.8) join either
Jessica’s Circle or Tommy’s
* Those not in Jessica’s Circle should be in Tom’s

* Those not in Tom’s Circle should be in Jessica’s

« WITH RECURSIVE (uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM))

RECURSIVE (uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM))

Fixed-point iter may not converge

WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

uid | name | age | pop |
142 Bart 1 0.9
121 Allison 8 0.85
TommyCircle JessicaCircle TommyCircle JessicaCircle

— > 142 142

121 121

19

20

Multiple minimal fixed points

WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

uid | name | age | pop |
142 Bart 1 0.9
121 Allison 8 0.85
TommyCircle JessicaCircle TommyCircle JessicaCircle

—> 142 121 — —> 121 142 ——

Legal mix of negation and recursion

e Construct a
 One node for each table defined in WLTH
* Adirected edge R — S if R is defined in terms of S

* Label the directed edge “—" if the query defining R is
not monotone with respectto S

* Legal SQL3 recursion: no cycle with a “—"" edge
* Called

* Bad mix: a cycle with at least one edge labeled “—"

Anc@ TommyCircle JessicaCircle
Legal! N llegal!

Stratified negation example

* Find pairs of persons with no common ancestors

WITH RECURSIVE (anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT al.anc, a2.desc
FROM al, az2
WHERE al.desc = a2.anc)),

(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

(personl, person2) AS
((SELECT pl.person, p2Z2.person
2

FROM pl, P
WHERE pl.person <> p2.person)
EXCEPT

(SELECT al.desc, a2.desc

FROM al, az2

WHERE al.anc = aZ2.anc))
SELECT *# FROM NoCommonAnc;

Evaluating stratified negation

* The of a node R is the maximum number of
“—" edges on any path from R O
in the dependency graph Ancestor
* Ancestor: stratum o
e Person: stratum o — | Person
* NoCommonAnc: stratum 1 [
NoCommonAnc

* Evaluation strategy

* Compute tables lowest-stratum first

* For each stratum, use fixed-point iteration on all nodes
in that stratum
e Stratum o0: Ancestor and Person
* Stratum 1: NoCommonAnc

" [ntuitively, there is

Summary

* SQL3 WITH recursive queries

* Solution to a recursive query (with no negation):
unique minimal fixed point

* Computing unique minimal fixed point: fixed-point
iteration starting from @

* Mixing negation and recursion is tricky

* lllegal mix: fixed-point iteration may not converge; there
may be multiple minimal fixed points

* Legal mix: stratified negation (compute by fixed-point
iteration stratum by stratum)

