
XPath and XQuery
Introduction to Databases

CompSci 316 Fall 2019

Announcements (Wed. Oct. 16)

• Gradiance XML exercise due next Monday
• Homework 3 assigned; due in two weeks

• Project milestone 1 feedback will be available by
Monday

2

Query languages for XML

• XPath
• Path expressions with conditions
FBuilding block of other standards (XQuery, XSLT, XLink,

XPointer, etc.)

• XQuery
• XPath + full-fledged SQL-like query language

• XSLT: mostly used a stylesheet language
• XPath + transformation templates
• We are not going to cover it in this course

3

Example DTD and XML
<?xml version="1.0"?>
<!DOCTYPE bibliography [

<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN ID #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ELEMENT content (#PCDATA|i)*>
<!ELEMENT section (title, content?, section*)>

]>
<bibliography>

<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>…</section>…

</book>
…

</bibliography>

4

XPath

• XPath specifies path expressions that match XML
data by navigating down (and occasionally up and
across) the tree
• Example
• Query: /bibliography/book/author

• Like a file system path, except there can be multiple
“subdirectories” with the same name

• Result: all author elements reachable from root via the
path /bibliography/book/author

5

Basic XPath constructs

/ separator between steps in a path
name matches any child element with this tag name
* matches any child element
@name matches the attribute with this name
@* matches any attribute
// matches any descendent element or the

current element itself
. matches the current element
.. matches the parent element

6

Simple XPath examples

• All book titles
/bibliography/book/title

• All book ISBN numbers
/bibliography/book/@ISBN

• All title elements, anywhere in the document
//title

• All section titles, anywhere in the document
//section/title

• Authors of bibliographical entries (suppose there
are articles, reports, etc. in addition to books)
/bibliography/*/author

7

Predicates in path expressions

[condition]matches the “current” element if
condition evaluates to true on the current element
• Books with price lower than $50

/bibliography/book[@price<50]
• XPath will automatically convert the price string to a

numeric value for comparison

• Books with author “Abiteboul”
/bibliography/book[author='Abiteboul']

• Books with a publisher child element
/bibliography/book[publisher]

• Prices of books authored by “Abiteboul”
/bibliography/book[author='Abiteboul']/@price

8

More complex predicates

Predicates can use and, or, and not
• Books with price between $40 and $50

/bibliography/book[40<=@price and @price<=50]

• Books authored by “Abiteboul” or those with price
no lower than $50
/bibliography/book[author='Abiteboul' or
@price>=50]

/bibliography/book[author='Abiteboul' or
not(@price<50)]

• Any difference between these two queries?

9

Predicates involving node-sets
/bibliography/book[author='Abiteboul']

• There may be multiple authors, so author in
general returns a node-set (in XPath terminology)
• The predicate evaluates to true as long as it

evaluates true for at least one node in the node-set,
i.e., at least one author is “Abiteboul”
• Tricky query

/bibliography/book[author='Abiteboul' and
author!='Abiteboul']
• Will it return any books?

10

XPath operators and functions

Frequently used in conditions:
x + y, x – y, x * y, x div y, x mod y
contains(x, y) true if string x contains string y
count(node-set) counts the number nodes in node-set
position() returns the “context position”

(roughly, the position of the current node in the node-
set containing it)

last() returns the “context size” (roughly, the size
of the node-set containing the current node)

name() returns the tag name of the current element

11

More XPath examples

• All elements whose tag names contain “section” (e.g.,
“subsection”)
//*[contains(name(), 'section')]

• Title of the first section in each book
/bibliography/book/section[position()=1]/title
• A shorthand: /bibliography/book/section[1]/title

• Title of the last section in each book
/bibliography/book/section[position()=last()]/title

• Books with fewer than 10 sections
/bibliography/book[count(section)<10]

• All elements whose parent’s tag name is not “book”
//*[name()!='book']/*

12

A tricky example

• Suppose for a moment that price is a child
element of book, and there may be multiple
prices per book
• Books with some price in range [20, 50]
• Wrong answer:
/bibliography/book
[price >= 20 and price <= 50]
• Correct answer:
/bibliography/book
[price[. >= 20 and . <= 50]]

13

De-referencing IDREF’s

id(identifier) returns the element with identifier
• Suppose that books can reference other books

<section><title>Introduction</title>
XML is a hot topic these days; see <bookref

ISBN="ISBN-10"/> for more details…
</section>

• Find all references to books written by “Abiteboul”
in the book with “ISBN-10”
/bibliography/book[@ISBN='ISBN-10']
//bookref[id(@ISBN)/author='Abiteboul']

Or simply:
id('ISBN-10')//bookref[id(@ISBN)/author='Abiteboul']

14

General XPath location steps

• Technically, each XPath query consists of a series of
location steps separated by /
• Each location step consists of

• An axis: one of self, attribute, parent, child,
ancestor,† ancestor-or-self,† descendant,
descendant-or-self, following, following-
sibling, preceding,† preceding-sibling,† and
namespace

• A node-test: either a name test (e.g., book, section, *) or a
type test (e.g., text(), node(), comment()), separated
from the axis by ::

• Zero of more predicates (or conditions) enclosed in square
brackets

†These reverse axes produce result node-sets in reverse document
order; others (forward axes) produce node-sets in document order

15

Example of verbose syntax

Verbose (axis, node test, predicate):
/child::bibliography
/child::book[attribute::ISBN='ISBN-10']
/descendant-or-self::node()
/child::title

Abbreviated:
/bibliography/book[@ISBN='ISBN-10']//title
• child is the default axis
• // stands for /descendant-or-self::node()/

16

Some technical details on evaluation
Given a context node, evaluate a location path as follows:
1. Start with node-set ! = {context node}
2.For each location step, from left to right:

• " ← ∅
• For each node % in !:

• Using % as the context node, compute a node-set !& from the axis
and the node-test

• Each predicate in turn filters !&, in order
• For each node %& in !&, evaluate predicate with the following context:

• Context node is %&
• Context size is the number of nodes in !&

• Context position is the position of %′ within !&

• " ← " ∪ !&

• ! ← "
3.Return !

17

One more example

• Which of the following queries correctly find the third
author in the entire input document?
• //author[position()=3]

• Same as /descendant-or-self::node()/author[position()=3]
• Finds all third authors (for each publication)

• /descendant-or-self::node()
[name()='author' and position()=3]
• Returns the third element or text node in the document

if it is an author
• /descendant-or-self::node()

[name()='author']
[position()=3]
• Correct!
• After the first condition is passed, the evaluation context changes:

• Context size: # of nodes that passed the first condition
• Context position: position of the context node within the list of nodes

18

XQuery

• XPath + full-fledged SQL-like query language
• XQuery expressions can be
• XPath expressions
• FLWOR expressions
• Quantified expressions
• Aggregation, sorting, and more…

• An XQuery expression in general can return a new
result XML document
• Compare with an XPath expression, which always

returns a sequence of nodes from the input document
or atomic values (boolean, number, string, etc.)

19

A simple XQuery based on XPath

Find all books with price lower than $50
<result>{

doc("bib.xml")/bibliography/book[@price<50]
}</result>

• Things outside {}’s are copied to output verbatim
• Things inside {}’s are evaluated and replaced by the

results
• doc("bib.xml") specifies the document to query

• Can be omitted if there is a default context document
• The XPath expression returns a sequence of book elements
• These elements (including all their descendants) are copied to

output

20

FLWR expressions

• Retrieve the titles of books published before 2000,

together with their publisher

<result>{
for $b in doc("bib.xml")/bibliography/book
let $p := $b/publisher
where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

21

• for: loop

• $b ranges over the result sequence, getting

one item at a time

• let: “assignment”

• $p gets the entire result of $b/publisher
(possibly many nodes)

• where: filtering by condition

• return: result structuring

• Invoked in the “innermost loop,” i.e., once

for each successful binding of all query

variables that satisfies where

An equivalent formulation

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

for $b in doc("bib.xml")/bibliography/book[year<2000]
return

<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

22

Another formulation

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

for $b in doc("bib.xml")/bibliography/book,
$p in $b/publisher

where $b/year < 2000
return

<book>
{ $b/title }
{ $p }

</book>
}</result>

23

Nested loop

• Is this query equivalent to the previous two?
• Yes, if there is one publisher per book
• No, in general

• Two result book elements will be
created for a book with two publishers

• No result book element will be created
for a book with no publishers

Yet another formulation

• Retrieve the titles of books published before 2000,
together with their publisher
<result>{

let $b := doc("bib.xml")/bibliography/book
where $b/year < 2000
return

<book>
{ $b/title }
{ $b/publisher }

</book>
}</result>

24

• Is this query correct?
• No!
• It will produce only one output book

element, with all titles clumped together
and all publishers clumped together

• All books will be processed (as long as one is
published before 2000)

Subqueries in return

• Extract book titles and their authors; make title an
attribute and rename author to writer
<bibliography>{

for $b in doc("bib.xml")/bibliography/book
return

<book title="{normalize-space($b/title)}">{
for $a in $b/author
return <writer>{string($a)}</writer>

}</book>
}</bibliography>

• normalize-space(string) removes leading and
trailing spaces from string, and replaces all internal
sequences of white spaces with one white space

25

What happens if we replace it with $a?

An explicit join

• Find pairs of books that have common author(s)
<result>{
for $b1 in doc("bib.xml")//book
for $b2 in doc("bib.xml")//book
where $b1/author = $b2/author

and $b1/title > $b2/title
return
<pair>
{$b1/title}
{$b2/title}

</pair>
}</result>

26

← These are string comparisons,
not identity comparisons!

Existentially quantified expressions
(some $var in collection satisfies
condition)
• Can be used in where as a condition

• Find titles of books in which XML is mentioned in
some section

<result>{
for $b in doc("bib.xml")//book
where (some $section in $b//section satisfies

contains(string($section), "XML"))
return $b/title

}</result>

27

Universally quantified expressions
(every $var in collection satisfies
condition)
• Can be used in where as a condition

• Find titles of books in which XML is mentioned in
every section

<result>{
for $b in doc("bib.xml")//book
where (every $section in $b//section satisfies

contains(string($section), "XML"))
return $b/title

}</result>

28

Aggregation (poor man’s version)

• List each publisher and the average prices of all its books
<result>{

for $pub in distinct-values(doc("bib.xml")//publisher)
let $price := avg(doc("bib.xml")//book[publisher=$pub]/@price)
return

<publisherpricing>
<publisher>{$pub}</publisher>
<avgprice>{$price}</avgprice>

</publisherpricing>
}</result>

• distinct-values(collection) removes duplicates by value
• If the collection consists of elements (with no explicitly declared types),

they are first converted to strings representing their “normalized
contents”

• avg(collection) computes the average of collection (assuming
each item in collection can be converted to a numeric value)

29

Conditional expression

• List each publisher and, only if applicable, the average
prices of all its books

<result>{
for $pub in distinct-values(doc("bib.xml")//publisher)
let $price := avg(doc("bib.xml")//book[publisher=$pub]/@price)
return

<publisherpricing>
<publisher>{$pub}</publisher>
{ if ($price)

then <avgprice>{$price}</avgprice>
else () }

</publisherpricing>
}</result>

• Use anywhere you’d expect a value, e.g.:
• let $foo := if (…) then … else …
• return <bar blah="{ if (…) then … else … }"/>

30

Empty list ≈ nothing

Aggregation (XQuery >1.0)

• A new group by clause
<result>{

for $book in doc("bib.xml")//book
let $pub := string($book/publisher)
group by $pub
return

<publisherpricing>
<publisher>{$pub}</publisher>
<avgprice>{avg($book/@price)}</avgprice>

</publisherpricing>
}</result>

• After the group by clause, for each group, any non-
grouping variable (e.g., $book) becomes a a sequence
of values that this variable takes for all members of that
group
• Not supported by our saxonb-xquery tool (which

only supports XQuery 1.0)

31

Sorting (a brief history)

• A path expression in XPath returns a sequence of
nodes according to original document order

• for loop will respect the ordering in the sequence

• August 2002 (http://www.w3.org/TR/2002/WD-xquery-20020816/)

• Introduce an operator sort by (sort-by-expression-list)
to output results in a user-specified order

• Example: list all books with price higher than $100, in
order by first author; for books with the same first
author, order by title

<result>{
doc("bib.xml")//book[@price>100]
sort by (author[1], title)

}</result>

32

http://www.w3.org/TR/2002/WD-xquery-20020816/

Tricky semantics

• List titles of all books, sorted by their ISBN
<result>{

(doc("bib.xml")//book sort by (@ISBN))/title
}</result>

• What is wrong?
• The last step in the path expression will return nodes in

document order!
• Correct versions
<result>{

for $b in doc("bib.xml")//book sort by (@ISBN)
return $b/title

}</result>

<result>{
doc("bib.xml")//book/title sort by (../@ISBN)

}</result>

33

WRONG!

Current version of sorting

Since June 2006

• sort by has been ditched

• A new order by clause is added to FLWR

• Which now becomes FLWOR

• Example: list all books in order by price from high to

low; for books with the same price, sort by first
author and then title
<result>{
for $b in doc("bib.xml")//book[@price>100]
stable order by

number($b/price) descending,
$b/author[1],
$b/title empty least

return $b
}</result>

34

Preserve input order

Order as number, not string

Override default (ascending)

Empty value considered smallest

Summary

• Many, many more features not covered in class
• XPath is very mature, stable, and widely used
• Has good implementations in many systems
• Is used in many other standards

• XQuery is also fairly popular
• Has become the SQL for XML
• Has good implementations in some systems

35

XQuery vs. SQL

• Where did the join go?
• Is navigational query going to destroy physical data

independence?
• Strong ordering constraint
• Can be overridden by unordered { for… }
• Why does that matter?

36

