
Physical Data
Organization

Introduction to Databases
CompSci 316 Fall 2019

Announcements (Wed., Oct. 30)

• Homework 3 due Monday
• Project milestone 2 due Wednesday
• Remember the weekly progress update due today
• No weekly progress update due next week

2

Outline

• It’s all about disks!
• That’s why we always draw databases as
• And why the single most important metric in database

processing is (oftentimes) the number of disk I/O’s
performed

• Storing data on a disk
• Record layout
• Block layout
• Column stores

3

Storage hierarchy
4

Registers

Cache

Memory

Disk

Tapes

Why a hierarchy?

How far away is data?

5

Location Cycles

Registers 1

On-chip cache 2

On-board cache 10

Memory 100

Disk 10
6

Tape 10
9

F I/O dominates—design your algorithms to reduce I/O!

(Source: AlphaSort paper, 1995)

The gap has been widening!

Latency Numbers
Every Programmer Should Know

6

A typical hard drive
7

http://upload.wikimedia.org/wikipedia/commons/f/f8/Laptop-hard-drive-exposed.jpg

A typical hard drive
8

Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow

Top view
9

Track
Track
Track

Sectors

“Zoning”: more sectors/data on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors

Disk access time

Sum of:
• Seek time: time for disk heads to move to the

correct cylinder
• Rotational delay: time for the desired block to

rotate under the disk head
• Transfer time: time to read/write data in the block

(= time for disk to rotate over the block)

10

Random disk access

Seek time + rotational delay + transfer time
• Average seek time
• Time to skip one half of the cylinders?
• Not quite; should be time to skip a third of them (why?)

• “Typical” value: 5 ms

• Average rotational delay
• Time for a half rotation (a function of RPM)
• “Typical” value: 4.2 ms (7200 RPM)

11

Sequential disk access

Seek time + rotational delay + transfer time
• Seek time
• 0 (assuming data is on the same track)

• Rotational delay
• 0 (assuming data is in the next block on the track)

• Easily an order of magnitude faster than random
disk access!

12

What about SSD (solid-state drives)?
13

http://www.techgoondu.com/wp-content/uploads/2012/12/SSD-6-25-121.jpg

What about SSD (solid-state drives)?

• No mechanical parts
• Mostly flash-based nowadays
• 1-2 orders of magnitude faster random access than

hard drives (under 0.1ms vs. several ms)
• But still much slower than memory (~0.1!s)

• Little difference between random vs. sequential
read performance
• Random writes still hurt
• In-place update would require erasing the whole

“erasure block” and rewriting it!

14

Important consequences

• It’s all about reducing I/O’s!
• Cache blocks from stable storage in memory
• DBMS maintains a memory buffer pool of blocks
• Reads/writes operate on these memory blocks
• Dirty (updated) memory blocks are “flushed” back to

stable storage

• Sequential I/O is much faster than random I/O

15

Performance tricks
• Disk layout strategy
• Keep related things (what are they?) close together:

same sector/block → same track → same cylinder →
adjacent cylinder

• Prefetching
• While processing the current block in memory, fetch the

next block from disk (overlap I/O with processing)
• Parallel I/O
• More disk heads working at the same time

• Disk scheduling algorithm
• Example: “elevator” algorithm

• Track buffer
• Read/write one entire track at a time

16

Record layout

Record = row in a table
• Variable-format records
• Rare in DBMS—table schema dictates the format
• Relevant for semi-structured data such as XML

• Focus on fixed-format records
• With fixed-length fields only, or
• With possible variable-length fields

17

Fixed-length fields

• All field lengths and offsets are constant
• Computed from schema, stored in the system catalog

• Example: CREATE TABLE User(uid INT, name
CHAR(20), age INT, pop FLOAT);

• Watch out for alignment
• May need to pad; reorder columns if that helps

• What about NULL?
• Add a bitmap at the beginning of the record

18

142

0 4
Bart (padded with space)

24
10 0.9

28 36

Variable-length records
• Example: CREATE TABLE User(uid INT,

name VARCHAR(20), age INT, pop FLOAT,
comment VARCHAR(100));

• Approach 1: use field delimiters (‘\0’ okay?)

• Approach 2: use an offset array

• Put all variable-length fields at the end (why?)
• Update is messy if it changes the length of a field

19

142

0 4
Bart\010 0.9

8 16
Weird kid!\0

142

0 4
Bart10 0.9

8 16
Weird kid!

18 22 32

22 32

LOB fields

• Example: CREATE TABLE User(uid INT,
name CHAR(20), age INT,
pop FLOAT, picture BLOB(32000));

• Student records get “de-clustered”
• Bad because most queries do not involve picture

• Decomposition (automatically and internally done
by DBMS without affecting the user)
• (uid, name, age, pop)
• (uid, picture)

20

Block layout

How do you organize records in a block?
• NSM (N-ary Storage Model)
• Most commercial DBMS

• PAX (Partition Attributes Across)
• Ailamaki et al., VLDB 2001

21

NSM

• Store records from the beginning of each block
• Use a directory at the end of each block
• To locate records and manage free space
• Necessary for variable-length records

22

142 Bart 10 0.9 123 Milhouse 10 0.2

456 Ralph 8 0.3

857 Lisa 8 0.7

Why store data and directory
at two different ends?

Options

• Reorganize after every update/delete to avoid
fragmentation (gaps between records)
• Need to rewrite half of the block on average

• A special case: What if records are fixed-length?
• Option 1: reorganize after delete

• Only need to move one record
• Need a pointer to the beginning of free space

• Option 2: do not reorganize after update
• Need a bitmap indicating which slots are in use

23

Cache behavior of NSM

• Query: SELECT uid FROM User WHERE pop > 0.8;

• Assumptions: no index, and cache line size < record size
• Lots of cache misses
• uid and pop are not close enough by memory standards

24

142 Bart 10 0.9 123 Milhouse 10 0.2

456 Ralph 8 0.3

857 Lisa 8 0.7
142 Bart 10

0.9 123 Milhouse

10 0.2 857 Lisa

8 0.7

456 Ralph 8

Cache
0.3

PAX

• Most queries only access a few columns
• Cluster values of the same columns in each block
• When a particular column of a row is brought into the cache,

the same column of the next row is brought in together

25

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)

Beyond block layout: column stores

• The other extreme: store tables by columns
instead of rows
• Advantages (and disadvantages) of PAX are

magnified
• Not only better cache performance, but also fewer I/O’s

for queries involving many rows but few columns
• Aggressive compression to further reduce I/O’s

• More disruptive changes to the DBMS architecture
are required than PAX
• Not only storage, but also query execution and

optimization

26

Example: Apache Parquet

• A table is horizontally partitioned into row groups
(~512MB-1GB/row group); each group is stored
consecutively
• On a “block” of HDFS (Hadoop Distributed File System)

• A row group is vertically divided into column
chunks, one per column

• Each column chunk is stored in pages (~8KB/page);
each page can be compressed/encoded
independently

☞Not designed for in-place updates though!

27

Summary
• Storage hierarchy
• Why I/O’s dominate the cost of database operations

• Disk
• Steps in completing a disk access
• Sequential versus random accesses

• Record layout
• Handling variable-length fields
• Handling NULL
• Handling modifications

• Block layout
• NSM: the traditional layout
• PAX: a layout that tries to improve cache performance

• Column stores: NSM transposed, beyond blocks

28

