Indexing

Introduction to Databases
CompSci 316 Fall 2019

E- DUKE
COMPUTER SCIENCE

Announcements (Mon., Nov. 4)

due today
* Sample solution to be posted on Sakai by this weekend

due Wed.
* No Piazza update this week

exercise assigned today
* Due next Monday

to be assigned Wed.

What are indexes for?

* Given a value, locate the record(s) with this value

SELECT * FROM R WHERE 5)
SELECT * FROM R, S WHERE I,
* Find data by other search criteria, e.g. > of this
lecture
* Range search
SELECT * FROM R WHERE ;

* Keyword search

|database indexing |“ Search I

Dense and sparse indexes

: one index entry for each search key value
* One entry may “point” to multiple records (e.g., two users named Jessica)

: one index entry for each block

* Records must be according to the search key
123 Milhouse 10 0.2 Bart
142 Bart 10 0.9 Jessica
123 279 Jessica 10 0.9 Lisa
456 345 Martin 8 2.3 Martin
\ :
857 456 Ralph 8 0.3 Milhouse
. 512 Nelson 10 0.4 Nelson
Sparse index . Raloh
on uid 679 Sherri 10 0.6 .
697 Terri 10 0.6 Sherri
Terri
857 Lisa 0.7
Windel
912 Windel 8 0. :
997 Jessica 8 0. Dense index

on name

Dense versus sparse indexes

* Index size
* Sparse index is smaller

* Requirement on records
* Records must be clustered for sparse index

* Lookup
* Sparse index is smaller and may fit in memory
* Dense index can directly tell if a record exists

* Update

* Easier for sparse index

Primary and secondary indexes

* Created for the of a table
* Records are usually clustered by the primary key
* Can be sparse

* Usually dense

* SQL
« PRIMARY KEY declaration automatically creates a

primary index, UNLQUE key automatically creates a
secondary index

* Additional secondary index can be created on non-key
attribute(s):
UserPoplIndex User (pop);

ISAM

* What if an index is still too big?

* Put a another (sparse) index on top of that!

(

Example: look up 197

), more or less

100, 200,
. Zz

-y 901

Index blocks 123, ..,

200, ..

100, 108,
119, 121

192,

200, 202,

901, .., 996
Vi

Data blocks

901,

996, 997,

Updates with ISAM

Example: delete 129

Index blocks | 100,

123,

].00,
119,

].08 ’
121

107

901, .., 996
y 4

100, 200, .., 901
— 4 N
vy 192 200, ..
pd y4
192, 197, || 200, 202, 901, 907,
Data blocks

996, 997,

* Overflow chains and empty data blocks degrade

performance

* Worst case: most records go into one long chain, so

lookups require scanning all data!

B*-tree

A
(more or less): good performance guarantee

: one node per block; large fan-out

Sample B*-tree nodes

to keys
100 <k
o O O
N 922
to keys to keys to keys to keys

100 < k<120 120<k <150 150<k <180 180<k

to records with these k values;
or, store records directly in leaves

130
N

120

-|> to next leaf node in sequence

B*-tree balancing properties

* Height constraint: all leaves at the same lowest level

 Fan-out constraint: all nodes at least half full
(except root)

Max # Max # Min # Min #
pointers keys active pointers keys
Non-leaf f f—1 /2] /2] —1
Root f f—1 2 1

Leaf f f—1 1f /2] |f /2]

Lookups

* SELECT * FROM R WHERE ;
« SELECT * FROM R WHERE k = 32;

Range query

« SELECT * FROM R WHERE k > 32 AND k < 179;

i

13

T

And follow next-leaf pointers until you hit upper bound

<1200

Insertion

* Insert a record with search key value 32

o
o
—

120
150
180

Look up where the

inserted key
should go...

14

[Hee MEEHE: MEsaHES
Vi ! REERE R

And insert it right there

Another insertion example

* Insert a record with search key value 152

-

()
—

120
150

0 ’180
51

EEINEE IRVEE
— o~ — — —
R R

Oops, node is already full!

Node splitting

o
o
—

Oops, that node
becomes full!

<100
<101
<4180
<1200

More node splitting

()
()

156

Need to add to parent node a pointer
to the newly created node

120
150

100
101
110
120
130
150
152
200

O O
N~
— -—l
”

<4180

* In the worst case, node splitting can “propagate” all the way
to the root of the tree (not illustrated here)

 Splitting the root introduces a new root of fan-out 2 and causes the tree
to grow “up” by one level

C -

P

Deletion

* Delete a record with search key value 130

Look up the key

to be deleted... S
0 be delete U

18

o
Ta)
-

<1156

(@)
N~
—

And delete it
Oops, node is too empty!

<4180
<1200

Stealing from a sibling

100

O
Tg)
Remember to fix the key m

in the least common ancestor
of the affected nodes

<100
<1101
<110
<120
t
3156

1179

<4180
<1200

Another deletion example

* Delete a record with search key value 179
o

o
—
o v O
N 1 ©
o~ —
S — O o O \°) Ioo
S O —~ N N v 0 O
— — — , —~ N

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

Remember to delete the
appropriate key from parent

* Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)

* When the root becomes empty, the tree “shrinks” by one level

Performance analysis

* How many I/O’s are required for each operation?
* h, the (more or less)
* Plus one or two to manipulate actual records
* Plus O(h) for reorganization (rare if f is large)
* Minus one if we cache the root in memory

* How big is h?
* Roughly logfanout N, where N is the number of records

* B*-tree properties guarantee that fan-out is least f /2 for
all non-root nodes

* Fan-out is typically large (in hundreds)—many keys and
pointers can fit into one block

* A 4-level B*-tree is enough for “typical” tables

B*-tree in practice

* Complex reorganization for deletion often is not
implemented (e.g., Oracle)

* Leave nodes less than half full and periodically
reorganize

* Most commercial DBMS use B*-tree instead of
hashing-based indexes because B*-tree handles
range queries

The Halloween Problem

* Story from the early days of System R...

* There is a B*-tree index on Payroll(salary)
* The update never stopped (why?)

* Solutions?
e Scan index in reverse, or
* Before update, scan index to create a “to-do” list, or
* During update, maintain a “done” list, or
* Tag every row with transaction/statement id

B*-tree versus ISAM

* |ISAM is more ; B-tree is more

* ISAM can be more compact (at least initially)
* Fewer levels and I/O’s than B*-tree

* Overtime, ISAM may not be balanced
* Cannot provide guaranteed performance as B*-tree does

B*-tree versus B-tree

* B-tree: why not store records (or record pointers)
in non-leaf nodes?
* These records can be accessed with fewer I/O’s

* Problems?

* Storing more data in a node decreases fan-out and
increases h

* Records in leaves require more 1/O’s to access
* Vast majority of the records live in leaves!

Beyond ISAM, B-, and B*-trees

* Other tree-based indexes: R-trees and variants,
GiST, etc.

* How about binary tree?

VS.

* Hashing-based indexes: extensible hashing, linear
hashing, etc.

* Text indexes: inverted-list index, suffix arrays, etc.

 Other tricks: bitmap index, bit-sliced index, etc.

27

