Query Processing

Introduction to Databases
CompSci 316 Fall 2019

E- DUKE
COMPUTER SCIENCE

Announcements (Wed., Nov. 6)

due today
* No Piazza update needed this week

(last one!) assigned; due in 2% weeks
exercise due next Mon.

Announcements (Mon., Nov. 11)

(last one!) due in 2 weeks
exercise due today
* Remember your weekly update on Piazza this Wed.

* Project milestone 2 feedback to be returned later
this week

Overview

* Many different ways of processing the same query
* Scan? Sort? Hash? Use an index?

* All have different performance characteristics and/or
make different assumptions about data

* Best choice depends on the situation

* Implement all alternatives
e Let the choose at run-time

Notation

* Relations: R,

* Tuples: 7,

* Number of tuples: R,

* Number of disk blocks: :

* Number of memory blocks available:

* Cost metric
 Number of 1/O’s
* Memory requirement

Scanning-based algorithms

700?10107b01
001010010101
)1')1 (xCO" | ()1(\0

)10100010101001

~

(‘ Ul _/] (“)l]\'_H.)“_).]

\ - . Fa - %
101011100

2T Fas A TavTar®s Fa®
Q101000010

,;".‘ 7"‘ '!1 \"/“*,

A _1‘!
1)\1:1‘“1{’"1:.:1
10001001000110101001 0
10 ‘;“"{ﬂ 01010100
L \

%/ lﬂ '/‘-\\!“1‘;\1 -\:,"'-.- ;

Table scan

* Scan table R and process the query
over R
of R without duplicate elimination

¢ |/O’s:
* Trick for selection: stop early if it is a lookup by key
* Memory requirement:

* Not counting the cost of writing the result out
* Same for any algorithm!

* Maybe not needed—results may be pipelined into
another operator

Nested-loop join

* For each block of R, and for each r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true overrand s
* Ris called the table; S is called the table
e |/O’s:
* Memory requirement:

Improvement:
* For each block of R, for each block of S:

For each r in the R block, for each s in the S block: ...

e |/O’s:
* Memory requirement: same as before

More improvements

* Stop early if the key of the inner table is being
matched

* Make use of available memory

 Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

e |/O’s:
* Or, roughly:
* Memory requirement: // (as much as possible)

* Which table would you pick as the outer?

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail sorter#mediaviewer/File:Mail sorting,1951.jpg

10

External merge sort

Remember (internal-memory) merge sort?

Problem: sort R, but R does not fit in memory
: read M blocks
of R at a time, them,]

and write out a

(M —-1) O
level- O runs at a time,
and write out a

LIC]

;E

|
| }
} Level-0

} Lev

Rk

¥/

(M — 1) level-1 runs at a time, and write

outa

produces one sorted run

el-1

Toy example

* 3 memory blocks available; each holds one number

*Input:1,7,4,5,2,8,9,6,3
e Pass 0O

* 1)7)4_)1)4)7
° 572)8_)2)5)8

*9,6,3—3,6,9
* Pass 1
*1,4,7+2,58—~1,2,4,5,7,8
* 3,69
* Pass 2 (final)
*1,24,57,8+3,6,9—1,2,3,4,5,6,7,8,9

Analysis

: read M blocks of R at a time, sort them, and

write out a level-0 run
B(R)

* There are [T level-0 sorted runs
: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run

* (M — 1) memory blocks for input, 1 to buffer output
(# of level—(i—1) runs}
M-1

o #0of level-i runs =

produces one sorted run

Performance of external merge sort

* Number of passes:

* |/O’s
* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

 Subtract B(R) for the final pass
* Roughly, thisis

* Memory requirement: M (as much as possible)

Some tricks for sorting

* Double buffering
* Allocate an additional block for each run
* Overlap I/O with processing
* Trade-off: smaller fan-in (more passes)

* Blocked I/O

* Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

* More sequential I/O’s
* Trade-off: larger cluster — smaller fan-in (more passes)

Sort-merge join

* Sort R and S by their join attributes; then merge
1, S = the first tuplesin sorted R and S
Repeat until one of R and S is exhausted:

Ifr.A > s.B then s =nexttuplein$§

elseifr.A < s.B thenr =nexttuplein R

else output all matching tuples, and
r,s=nextinRand$§

¢ |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst case is : everything joins

- N T 0NN < N
SSSSSS_/
OO OO O L

— N MM OO

T T T |
Q@ @@ @
haonaaunou

— M NN NN
LI | | | R [O I |
LN NN S

oSO F®won

Example of merge join

18

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

— Disk i
, (| | mMeree
=39 : 8 g || I— g
£ L] gy \Join
] . / > . >
£]
S S - >
V.S S S—— -
Merge

Performance of SMJ

* If SMJ completes in two passes:
e |/O’s:
* Memory requirement

* We must have enough memory to accommodate one block
from each run:

* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

Other sort-based algorithms

* Union (set), difference, intersection
* More or less like SMJ

* Duplication elimination

* External merge sort
* Eliminate duplicates in sort and merge

* Grouping and aggregation
* External merge sort, by group-by columns

* Trick: produce “partial” aggregate values in each run, and
combine them during merge

 This trick doesn’t always work though
* Examples: SUM(DISTINCT ..),MEDIAN(...)

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

21

Hash join

R Mg 4=sp S

* Main idea
* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

* If r.A and s. B get hashed to different partitions, they
don’t join

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

22

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory < Dbisk >
o-—
RrEe=——_ g |
] +—
] +—
M — 1 partitions of R
SN—— -

Same for S

Probing phase

* Read in each partition of R, stream in the
corresponding partition of §, join
* Typically build a hash table for the partition of R

* Not the same hash function used for partition, of course!

R <
partitions

S <
partitions |_

< _Disk ™ Memory
I | 0ad

e T EEE - @
] K._
I | stream| / Foreach S tuple,
I —— @ probe and join
]

Performance of (two-pass) hash join

* If hash join completes in two passes:
e |/O’s:
* Memory requirement:

* In the probing phase, we should have enough memory to fit
one partition of R:

* We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

* What if a partition is too large for memory?

* Read it back in and partition it again!
* See the duality in multi-pass merge sort here?

26

Hash join versus SMJ

(Assuming two-pass)
* |/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1 < +/B(R) + B(S)

* Hash join wins when two relations have very different sizes

* Other factors
* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets
* SMJ can be adapted for inequality join predicates
* SMJ wins if R and/or S are already sorted
* SMJ wins if the result needs to be in sorted order

What about nested-loop join?

* May be best if many tuples join
* Example: non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHERE user defined pred(R.A, S.B)

Other hash-based algorithms

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

* Tuples in the same group must end up in the same
partition/bucket

* Keep a running aggregate value for each group
* May not always work

Duality of sort and hash

* Divide-and-conquer paradigm
* Sorting: physical division, logical combination
* Hashing: logical division, physical combination
* Handling very large inputs
* Sorting: multi-level merge
* Hashing: recursive partitioning
* |/O patterns

* Sorting: sequential write, random read (merge)
» Hashing: random write, sequential read (partition)

Index-based algorithms

{JmoIgATOr: ¥

[otk acenta 4l
ANEEACTUE R | i

http://il.trekearth.com/photos/28820/p2270994. jpg

31

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate:
* Use an index (e.g., ISAM or B*-tree) on R(4)
* Hash index is not applicable

* Indexes other than those on R(A) may be useful
* Example: B*-tree index on R(4, B)
* How about B*tree index on R(B,A)?

Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples
* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
index on R(A)
* Need to follow pointers to get the actual result tuples

* Say that 20% of R satisfies A > v
* Could happen even for equality predicates

* |/O’s for index-based selection:
* |/O’s for scan-based selection:
* Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:
Use the index on S(B) to retrieve s withs.B =r1.4
Output rs

¢ |/O’s:
* Typically, the cost of an index lookup is 2-4 I/O’s
* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement:

Zig-zag join using ordered indexes

R Mg =55 S

* Idea: use the ordering provided by the indexes on R(A)
and S(B) to eliminate the sorting step of sort-merge join

* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

) mmg =g =y 12 17 ™19

36

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
 External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and
aggregation
* Hash
* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation
* Index
* Selection, index nested-loop join, zig-zag join

