Query Processing:
A Systems View

Introduction to Databases
CompSci 316 Fall 2019

E’ DUKE
COMPUTER SCIENCE



Announcements (Wed., Nov. 13)

* Project milestone 2 feedback on Gradescope by Fri.
* Weekly update due on Piazza today!

due on before Thanksgiving Break



A query’s trip through the DBMS

SQL ciuery
<Qu|ery> ‘
__<SFW2 \
<select-list> |<mere-cond> Parse tree
. | <fr/om-§t> ‘ X
<table> <table> ;
Member Group Logicc;l plan
PROJECT (name, gid) ‘ ;
|
MERGE-JOIN (gid) Physic‘?l plan
SORT (gid
© |(g’ ) SCAN (Group) ‘ y

SCAN (Member)

Result

SELECT name, uid

FROM Member, Group

WHERE Member.gid =
Group.gid;

7;[name, uid
?-I\/lember.gid:Group.gid
X

7\

Member Group



Parsing and validation

Detect and reject errors

* Detect and reject errors
* Nonexistent tables/views/columns?
* Insufficient access privileges?
* Type mismatches?
* Examples: AVG(name), name + pop, User UNION Member

Also
* Expand *
* Expand view definitions

* Information required for semantic checking is found in
(which contains all schema information)



Logical plan

* Nodes are operators (often relational
algebra operators)

* There are many equivalent logical plans
7;[Group.name

OI-User.namez“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X
7 N

X
PR Group
User Member

7TGroup name

Member.gid = Group.gid

/ Group

X User uid= Member.uid

/ Member

IO-name = “Bart”

User



Physical (execution) plan

* A complex query may involve multiple tables and
various query processing algorithms
* E.g., table scan, index nested-loop join, sort-merge join,
hash-based duplicate elimination...
* A for a query tells the DBMS query
processor how to execute the query
* Atree of
* Each operator implements a query processing algorithm

* Each operator accepts a number of input tables/streams
and produces a single output table/stream



Examples of physical plans

SELECT Group.name
FROM User, Member, Group

WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJECT (Group.name) PROJECT (Group.name)
I I
INDEX-N ESTED-L%)P-JOIN (gid) MERGE-JOIN (gid)
, N
INDEX-NESTED LOOPIT:)eI)Iilon'jroup(g,d) SOR}(gid) AN (Group)
DEX D LOOP-JOIN (uid) MERGE-JOIN (uid)
Index on Member(uid) / N :
v SORT (uid)
FILTER (name = “Bart”) AN

INDEX-SCAN (name = “Bart”)

I | SCAN (Member)
Index on User(hame) SCAN (User)

* Many physical plans for a single query
* Equivalent results, but different costs and assumptions!



Physical plan execution

* How are intermediate results passed from child
operators to parent operators?

Compute the tree bottom-up
Children write intermediate results to temporary files
Parents read temporary files

Do not materialize intermediate results
Children pipeline their results to parents



http://www.dreamstime.com/royalty-free-stock-image-basement-pipelines-grey-image25917236




Ilterator interface

* Every physical operator maintains its own
execution state and implements the following
methods:

: Initialize state and get ready for processing

: Return the next tuple in the result (or a
null pointer if there are no more tuples); adjust state to
allow subsequent tuples to be obtained

: Clean up



An iterator for table scan

* State: a block of memory for buffering input R;
a pointer to a tuple within the block

: allocate a block of memory

* If no block of R has been read yet, read the first block
from the disk and return the first tuple in the block
* Ornullif R is empty

* If there is no more tuple left in the current block, read
the next block of R from the disk and return the first

tuple in the block
 Or nullif there are no more blocks in R

* Otherwise, return the next tuple in the memory block
: deallocate the block of memory



An iterator for nested-loop join

: An iterator for the left subtree NESTED-LOOP-JOIN
: An iterator for the right subtree

S-open() A
S.open()

r = R.getNext()

while True:
s = S.getNext()
if s is null:
S.close()
S.open()
s = S.getNext()
if s is null:
return null
r = R.getNext()
if r is null:
return null
if joins(r, s):
return concat(r, s)

R.close()
S.close()



An iterator for 2-pass merge sort

* Allocate a number of memory blocks for sorting
* Callopen () on child iterator

e |f called for the first time

* Call getNext () on child to fill all blocks, sort the tuples, and
output a run

* Repeat until getNext () on child returns null

* Read one block from each run into memory, and initialize pointers
to point to the beginning tuple of each block

* Return the smallest tuple and advance the corresponding
pointer; if a block is exhausted bring in the next block in the
same run

* Callclose () onchild
* Deallocate sorting memory and delete temporary runs



Blocking vs. non-blocking iterators

* A iterator must call getNext ()
exhaustively (or nearly exhaustively) on its children
before returning its first output tuple

* Examples: sort, aggregation

* A iterator expects to make only a few
getNext () calls onits children before returning
its first (or next) output tuple

* Examples:



Execution of an iterator tree

e Call

e Call repeatedly until
it returns null

e Call

® Requests go down the tree
% |ntermediate result tuples go up the tree

& No intermediate files are needed

* But maybe useful if an iterator is opened many times

* Example: complex inner iterator tree in a nested-loop join;
““cache” its result in an intermediate file



Iterators are showing their age...

While iterators are an elegant way of pipelining
execution, their implementation tends to be
inefficient on modern architectures

* Too many (virtual) function calls

* Poor data locality—in memory instead of CPU
registers

* Fail to take advantage of
* Compiler loop unrolling
* CPU pipelining
* SIMD (single instruction, multiple data)



Which one do you think runs faster?

R.open()
S.open()
r = R.getNext()

while True:
s = S.getNext()
if s is null:

S.close() count = 0
S.open() .
s =pS.getNeXt() for r in Rf
if s is null: versus for s in S:

return null if r.A = s.A:
r = R.getNext() count += 1
if r is null: return count

return null
if joins(r, s):
return concat(r, s)

R.close()
S.close()

R.open()
state = init()

while True:
r = R.getNext()
if r is null:
return finalize(state)
state = accumulate(state, r)

R.close()



Whole-stage “codegen”

* Given a physical plan, fuse operators together to

generate query-specific code, with loops instead of
iterator function calls

* Instead of “interpreting” the physical plan, give
generated code to an optimizing compiler

e Functionality of a general-purpose execution
engine; performance as if system is hand-built to
run your specific query

* This approach has been adopted by newer systems,
such as Spark



