Query Optimization

Introduction to Databases
CompSci 316 Fall 2019

E- DUKE
COMPUTER SCIENCE

Announcements (Mon., Nov. 18)

due next in one week
* Except Problem X2, which will be due in two weeks

* Homework 3 grades released
* See Sakai for sample solution

* Project milestone 2 feedback released
due this Wed.

Query optimization

* Questions

* How to enumerate possible plans
* How to estimate costs
* How to pick the “best” one

* Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do
—+ | — — b —

1second 1 minute 1 hour

Plan enumeration in relational algebra

* Apply relational algebra equivalences

%~ Join reordering: X and X are associative and
commutative (except column ordering, but that is
unimportant)

VANEVANEANE
ANMVANRERAN

More relational algebra equivalences

* Convert g,,-X toffrom x,:
* Merge/split a’s:
* Merge/split ir’s: ,where L; € L,

* Push down/pull up o:
, Where

* p, is a predicate involving only R columns
* psis a predicate involving only S columns
« pand p’ are predicates involving both R and S columns

e Push down m: , where
L' is the set of columns referenced by p that are notin L

* Many more (seemingly trivial) equivalences...
* Can be systematically used to transform a plan to new ones

Relational query rewrite example

7|T(]roup.name

OI-User.namez“Bart” A User.uid = Member.uid A Member.gid = Group.gid
X

7 N\

X' Group

7\
User Member T[Groupname

O-I\/lember gid = Group.gid

/ Group 7-[Group name

O'User uid = Member.uid ember gid = Group.gid

X

O name = “Bart” X User uid = Member.uid

U;er / Member

IO-name = “Bart”

User

Heuristics-based query optimization

* Start with a logical plan

* Why?
* Why not?

* Why?
* Why not?
* Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

SQL query rewrite

* More complicated—subqueries and views divide a
query into nested “blocks”

* Processing each block separately forces particular join
methods and join order

* Even if the planis optimal for each block, it may not be
optimal for the entire query

* Unnest query: convert subqueries/views to joins

®We can just deal with select-project-join queries
* Where the clean rules of relational algebra apply

SQL query rewrite example

e« SELECT name

FROM User
WHERE uid = ANY (SELECT uid FROM Member) ;

« SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

* Wrong

« SELECT name
FROM (SELECT DISTINCT User.uid, name
FROM User, Member
WHERE User.uid = Member.uid) ;

Dealing with correlated subqueries

« SELECT gid FROM
WHERE name LIKE 'Springfield?%Z'
AND min size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =) 3

« SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t

WHERE t.gid = Group.gid AND min size > t.cnt
AND name LIKE 'SpringfieldZ';

* New subquery is inefficient (it computes the size for
every group)

“Magic” decorrelation

« SELECT gid FROM
WHERE name LIKE 'Springfield?Z'
AND min size > (SELECT COUNT(*) FROM Member

WHERE Member.gid =) 5
- WITH AS
(SELECT * FROM Group WHERE name LIKE 'SpringfieldZ'),
AS
(SELECT DISTINCT gid FROM Supp Group),
AS

((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid

GROUP BY Member.gid) UNION

(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp Group.gid FROM Supp Group, DS
WHERE Supp Group.gid = DS.gid
AND min size > DS.cnt;

Heuristics- vs. cost-based optimization

* Apply heuristics to rewrite plans into cheaper ones

logical plan to combine “blocks” as much as
possible

query block by block
* Enumerate logical plans (already covered)
* Estimate the cost of plans
* Pick a plan with acceptable cost

* Focus: select-project-join blocks

Cost estimation

Physical plan example: PROJECT (Group.title)

MERGE-JOIN (gid)

N
Input to SORT(gid): MERGE:JOIN (yid)
FILTER (name = “Bart”) >ORLUid)

I SCAN (Member)
SCAN (User)

* We have: cost estimation for each operator

* Example: SORT(gid) takes O (B (input)xlog,, B(input))
* But whatis B(input)?

e We need:

Cardinality estimation

http://www.learningresources.com/product/estimation+station.do

14

Selections with equality predicates

o Q:
* Suppose the following information is available

e Size of R:
e Number of distinct 4 valuesin R:

* Assumptions
* Values of A are uniformly distributed in R

* Values of v in Q are uniformly distributed over all
R. A values

* Selectivity factor of (A = v) is

Conjunctive predicates

. Q:
* Additional assumptions
* (A =u)and (B = v) are independent

* Counterexample: major and advisor

* No “over”-selection
* Counterexample: A is the key

* Reduce total size by all selectivity factors

Negated and disjunctive predicates

oQ:

* Selectivity factor of —p is (1 — selectivity factor of p)

° Q:
. ~ (1 1

Q1 = IRl (Yiar) + Yimpr))?

* No! Tuples satisfying (A = u) and (B = v) are counted twice

* Inclusion-exclusion principle

Range predicates

. Q:

* Not enough information!
* Just pick, say,

* With more information

* Largest R.A value:
* Smallest R.A value:

* In practice: sometimes the highest and lowest
are used instead

* The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

Two-way equi-join

. Q:
* Assumption:

* Every tuple in the “smaller’” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

* Thatis, if [myR| < |msS|thenmsR S myS
* Certainly not true in general
* But holds in the common case of foreign key joins

* Selectivity factorof R.A =S.A s

Multiway equi-join

o Q:
* What is the number of distinct C values in the join
of R and §?

* Assumption:
* A non-join attribute does not lose values from its set of
possible values
* Thatis,if Aisin R but not S, thenm (R =< S) = m4R
* Certainly not true in general

* But holds in the common case of foreign key joins (for
value sets from the referencing table)

Multiway equi-join (cont’d)

o Q:
* Start with the product of relation sizes
* [R[-IS]-IT]
* Reduce the total size by the selectivity factor of
each join predicate
* R.B=S.5:
*5.C=T.C:

Cost estimation: summary

* Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

* Lots of assumptions and very rough estimation
e Accurate estimate is not needed

* Maybe okay if we overestimate or underestimate
consistently

* May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 ;

* Not covered: better estimation using

Search strategy

http://1l.bp.blogspot.com/-Motdu8reRKs/TgyAistki5QI /AAAAAAAAAKE /mi8ejfZ8S7U/s1600/cornMaze. jpg

23

Search space
* Huge! / \
. “BUShy” plan example: / \ / \
R, R1 R3 / \

* Just considering different join orders, there are
bushy plans for Ry ™ - X R,

* 30240 forn =6

* And there are more if we consider:
* Multiway joins
* Different join methods
* Placement of selection and projection operators

Left-deep plans

X
~~
] R:
T
X R,
)k
— R3
R, R4
* Heuristic: consider only “ ”” plans, in which

only the left child can be a join

* Tend to be better than plans of other shapes, because many
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

* How many left-deep plans are there for R;{ ™ --- X R,;?

A greedy algorithm

* S1, S,
* Say selections have been pushed down; i.e., S; = 0, (R;)

* Start with the pair §;, §; with the smallest estimated
size for §; X §;

* Repeat until no relation is left:
Pick S} from the remaining relations such that the join
of S, and the current result yields an intermediate
result of the smallest size

4 wr S, S5, S

A dynamic programming approach

* Generate optimal plans
* Pass 1: Find the best single-table plans (for each table)

* Pass 2: Find the best two-table plans (for each pair of
tables) by combining best single-table plans

* Pass k: Find the best k-table plans (for each combination
of k tables) by combining two smaller best plans found

In previous passes

 Rationale: Any subplan of an optimal plan must also
be optimal (otherwise, just replace the subplan to
get a better overall plan)

= Well, not quite...

The need for “interesting order”

« Example: R(A4,B) @ S(A,C) X T(A4,D)
* Best plan for R x4 S: hash join (beats sort-merge join)

* Best overall plan: sort-merge join R and S, and then
sort-merge join with T
* Subplan of the optimal plan is not optimal!

* Why?
* The result of the sort-merge join of R and S is sorted on A
* This is an that can be exploited by later

processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!

Dealing with interesting orders

When picking the best plan

* Comparing their costs is not enough
* Plans are not totally ordered by cost anymore

* Comparing interesting orders is also needed
* Plans are now partially ordered

* Plan X is better than plan Y if
 Costof XislowerthanVY, and
* Interesting orders produced by X “subsume” those produced by Y

* Need to keep a set of optimal plans for joining every
combination of k tables

* At most one for each interesting order

Summary

* Relational algebra equivalence
* SQL rewrite tricks
* Heuristics-based optimization

* Cost-based optimization
* Need statistics to estimate sizes of intermediate results
* Greedy approach
* Dynamic programming approach

