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Announcements (Mon., Nov. 18)

• Homework 4 due in one week
• Except Problem X2, which will be due in two weeks

• Homework 3 grades released
• See Sakai for sample solution

• Project milestone 2 feedback released
• Weekly piazza update due this Wed.
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Query optimization

• One logical plan → “best” physical plan
• Questions
• How to enumerate possible plans
• How to estimate costs
• How to pick the “best” one

• Often the goal is not getting the optimum plan, but 
instead avoiding the horrible ones
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Any of these will do



Plan enumeration in relational algebra

• Apply relational algebra equivalences
FJoin reordering: × and ⋈ are associative and 

commutative (except column ordering, but that is 
unimportant)
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More relational algebra equivalences

• Convert !"-× to/from ⋈": !" %×& = % ⋈" &
• Merge/split !’s: !"( !")% = !"(∧")%
• Merge/split +’s: +,- +,)% = +,(%, where .- ⊆ .0
• Push down/pull up !:
!"∧"1∧"2 % ⋈"3 & = !"1% ⋈"∧"3 !"2& , where
• 45 is a predicate involving only % columns
• 46 is a predicate involving only & columns
• 4 and 47 are predicates involving both % and & columns

• Push down +: +, !"% = +, !" +,,3% , where
• .7 is the set of columns referenced by 4 that are not in .

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new ones
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Relational query rewrite example
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!Group.name"User.name=“Bart” ∧ User.uid = Member.uid ∧Member.gid = Group.gid
×

Member
Group×

User !Group.name"Member.gid = Group.gid
×

Member

Group

×

User

"User.uid = Member.uid

"name = “Bart”

Push down "
!Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

"name = “Bart”

Convert "&-× to ⋈&



Heuristics-based query optimization

• Start with a logical plan
• Push selections/projections down as much as 

possible
• Why? Reduce the size of intermediate results
• Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
• Why? Reduce the size of intermediate results
• Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical 
plan (by choosing appropriate physical operators)
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SQL query rewrite

• More complicated—subqueries and views divide a 
query into nested “blocks”
• Processing each block separately forces particular join 

methods and join order

• Even if the plan is optimal for each block, it may not be 
optimal for the entire query

• Unnest query: convert subqueries/views to joins

FWe can just deal with select-project-join queries

• Where the clean rules of relational algebra apply
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SQL query rewrite example
• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);
• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;
• Wrong—consider two Bart’s, each joining two groups

• SELECT name
FROM (SELECT DISTINCT User.uid, name

FROM User, Member
WHERE User.uid = Member.uid);

• Right—assuming User.uid is a key
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Dealing with correlated subqueries
• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
• SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt

FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';
• New subquery is inefficient (it computes the size for 
every group)
• Suppose a group is empty?
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“Magic” decorrelation
• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
• WITH Supp_Group AS
(SELECT * FROM Group WHERE name LIKE 'Springfield%'),

Magic AS
(SELECT DISTINCT gid FROM Supp_Group),

DS AS
((SELECT Group.gid, COUNT(*) AS cnt

FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION

(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;
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Process the outer query without the subquery

Collect bindings

Evaluate the subquery with bindings

Finally, refine
the outer query



Heuristics- vs. cost-based optimization

• Heuristics-based optimization
• Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks” as much as 

possible
• Optimize query block by block

• Enumerate logical plans (already covered)

• Estimate the cost of plans
• Pick a plan with acceptable cost

• Focus: select-project-join blocks
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Cost estimation

• We have: cost estimation for each operator
• Example: SORT(gid) takes ! " input ×log, " input

• But what is " input ?

• We need: size of intermediate results
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PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)

MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(gid):
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http://www.learningresources.com/product/estimation+station.do

Cardinality estimation



Selections with equality predicates

• !: "#$%&
• Suppose the following information is available
• Size of &: &
• Number of distinct ' values in &: (#&

• Assumptions
• Values of ' are uniformly distributed in &
• Values of ) in ! are uniformly distributed over all 
&. ' values

• ! ≈ ,- ./-
• Selectivity factor of ' = ) is ,1 ./-
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Conjunctive predicates

• !: "#$% ∧ '$()
• Additional assumptions
• * = , and - = . are independent

• Counterexample: major and advisor
• No “over”-selection

• Counterexample: * is the key

• ! ≈ 01 231 ⋅ 251
• Reduce total size by all selectivity factors
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Negated and disjunctive predicates

• !: "#$%&
• ! ≈ & ⋅ 1 − +, -./

• Selectivity factor of ¬1 is (1 − selectivity factor of 1)

• !: "#23 ∨ 52%&
• ! ≈ & ⋅ +, -./ + +, -7/ ?

• No! Tuples satisfying 8 = : and ; = < are counted twice

• ! ≈ & ⋅ +, -./ + +, -7/ − +, -./ -7/
• Inclusion-exclusion principle
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Range predicates

• !: "#$%&
• Not enough information!
• Just pick, say, ! ≈ & ⋅ ⁄* +

• With more information
• Largest R.A value: high &. 0
• Smallest R.A value: low &. 0
• ! ≈ & ⋅ 4564 7.# 8%

4564 7.# 89:; 7.#
• In practice: sometimes the second highest and lowest 

are used instead
• The highest and the lowest are often used by inexperienced 

database designer to represent invalid values!
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Two-way equi-join

• !: " #, % ⋈ ' #, (
• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer 

distinct values for the join attribute) joins with some 
tuple in the other relation
• That is, if )*" ≤ )*' then )*" ⊆ )*'
• Certainly not true in general
• But holds in the common case of foreign key joins

• ! ≈ . ⋅ 0
123 45. , 450

• Selectivity factor of ". # = '. # is 89 123 45. , 450
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Multiway equi-join

• !: " #, % ⋈ ' %, ( ⋈ ) (, *
• What is the number of distinct ( values in the join 

of " and '?
• Assumption: preservation of value sets
• A non-join attribute does not lose values from its set of 

possible values
• That is, if # is in " but not ', then +, " ⋈ ' = +,"
• Certainly not true in general
• But holds in the common case of foreign key joins (for 

value sets from the referencing table)
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Multiway equi-join (cont’d)

• !: " #, % ⋈ ' %, ( ⋈ ) (, *
• Start with the product of relation sizes 
• " ⋅ ' ⋅ )

• Reduce the total size by the selectivity factor of 
each join predicate
• ".% = '. %: ./ 012 345 , 346
• '. ( = ). (: ./ 012 376 , 378
• ! ≈ 5 ⋅ 6 ⋅|8|

012 345 , 346 ⋅012 376 , 378
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Cost estimation: summary

• Using similar ideas, we can estimate the size of 
projection, duplicate elimination, union, difference, 
aggregation (with grouping)
• Lots of assumptions and very rough estimation
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate 

consistently
• May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

• Not covered: better estimation using histograms
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Search strategy
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Search space

• Huge!
• “Bushy” plan example:

• Just considering different join orders, there are 
!"#! !
"#% ! bushy plans for &% ⋈ ⋯ ⋈ &"
• 30240 for - = 6

• And there are more if we consider:
• Multiway joins
• Different join methods
• Placement of selection and projection operators
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Left-deep plans

• Heuristic: consider only “left-deep” plans, in which 
only the left child can be a join
• Tend to be better than plans of other shapes, because many 

join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for !" ⋈ ⋯ ⋈ !%?
• Significantly fewer, but still lots— &! (720 for & = 6)
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A greedy algorithm

• !", … , !%
• Say selections have been pushed down; i.e., !& = () *&

• Start with the pair !&, !+ with the smallest estimated 
size for !& ⋈ !+
• Repeat until no relation is left:

Pick !- from the remaining relations such that the join 
of !- and the current result yields an intermediate 
result of the smallest size
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Current subplan

… , !-, !., !/,…
Remaining

relations
to be joined

Pick most efficient join method

⋈
!-

Minimize expected size



A dynamic programming approach

• Generate optimal plans bottom-up
• Pass 1: Find the best single-table plans (for each table)
• Pass 2: Find the best two-table plans (for each pair of 

tables) by combining best single-table plans
• …
• Pass !: Find the best !-table plans (for each combination 

of ! tables) by combining two smaller best plans found 
in previous passes
• …

• Rationale: Any subplan of an optimal plan must also 
be optimal (otherwise, just replace the subplan to 
get a better overall plan)

FWell, not quite…
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The need for “interesting order”

• Example: ! ", $ ⋈ & ", ' ⋈ ( ",)
• Best plan for ! ⋈ &: hash join (beats sort-merge join)
• Best overall plan: sort-merge join ! and &, and then 

sort-merge join with (
• Subplan of the optimal plan is not optimal!

• Why?
• The result of the sort-merge join of ! and & is sorted on "
• This is an interesting order that can be exploited by later 

processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!
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Dealing with interesting orders

When picking the best plan
• Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered
• Plan ! is better than plan " if

• Cost of ! is lower than ", and
• Interesting orders produced by ! “subsume” those produced by "

• Need to keep a set of optimal plans for joining every 
combination of # tables
• At most one for each interesting order
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Summary

• Relational algebra equivalence
• SQL rewrite tricks
• Heuristics-based optimization
• Cost-based optimization
• Need statistics to estimate sizes of intermediate results
• Greedy approach
• Dynamic programming approach
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