Query Optimization
 Introduction to Databases
 CompSci 316 Fall 2019

Announcements (Mon., Nov. 18)

- Homework 4 due in one week
- Except Problem X2, which will be due in two weeks
- Homework 3 grades released
- See Sakai for sample solution
- Project milestone 2 feedback released
- Weekly piazza update due this Wed.

Query optimization

- One logical plan \rightarrow "best" physical plan
- Questions
- How to enumerate possible plans
- How to estimate costs
- How to pick the "best" one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra

- Apply relational algebra equivalences

Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert $\sigma_{p}-\times$ to/from $\bowtie_{p}: \sigma_{p}(R \times S)=R \bowtie_{p} S$
- Merge/split σ 's: $\sigma_{p_{1}}\left(\sigma_{p_{2}} R\right)=\sigma_{p_{1} \wedge p_{2}} R$
- Merge/split π 's: $\pi_{L_{1}}\left(\pi_{L_{2}} R\right)=\pi_{L_{1}} R$, where $L_{1} \subseteq L_{2}$
- Push down/pull up σ :
$\sigma_{p \wedge p_{r} \wedge p_{s}}\left(R \bowtie_{p^{\prime}} S\right)=\left(\sigma_{p_{r}} R\right) \bowtie_{p \wedge p^{\prime}}\left(\sigma_{p_{s}} S\right)$, where
- p_{r} is a predicate involving only R columns
- p_{s} is a predicate involving only S columns
- p and p^{\prime} are predicates involving both R and S columns
- Push down π : $\pi_{L}\left(\sigma_{p} R\right)=\pi_{L}\left(\sigma_{p}\left(\pi_{L L^{\prime}} R\right)\right)$, where
- L^{\prime} is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
- Can be systematically used to transform a plan to new ones

Relational query rewrite example

Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
- Why? Reduce the size of intermediate results
- Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
- Why? Reduce the size of intermediate results
- Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested "blocks"
- Processing each block separately forces particular join methods and join order
- Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins

We can just deal with select-project-join queries

- Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name

FROM User
WHERE uid = ANY (SELECT uid FROM Member);

- SELECT name FROM User, Member WHERE User.uid = Member.uid;
- Wrong-consider two Bart's, each joining two groups
- SELECT name

FROM (SELECT DISTINCT User.uid, name FROM User, Member WHERE User.uid = Member.uid);

- Right—assuming User .uid is a key

Dealing with correlated subqueries

- SELECT gid FROM Group WHERE name LIKE 'Springfield\%' AND min_size > (SELECT COUNT(*) FROM Member WHERE Member.gid = Group.gid);
- SELECT gid

FROM Group, (SELECT gid, COUNT(*) AS cnt FROM Member GROUP BY gid) t
WHERE t.gid $=$ Group.gid AND min_size > t.cnt AND name LIKE 'Springfield\%';

- New subquery is inefficient (it computes the size for every group)
- Suppose a group is empty?

"Magic" decorrelation

- SELECT gid FROM Group WHERE name LIKE 'Springfield\%' AND min_size > (SELECT COUNT(*) FROM Member WHERE Member.gid = Group.gid);
- WITH Supp Group AS Process the outer query without the subquery (SELECT * FROM Group WHERE name LIKE 'Springfield\%'),

Magic AS Collect bindings

(SELECT DISTINCT gid FROM Supp_Group),
DS AS Evaluate the subquery with bindings
((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION
(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))
SELECT Supp_Group.gid FROM Supp_Group, DS Finally, refine WHERE Supp_Group.gid = DS.gid the outer query AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
- Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
- Rewrite logical plan to combine "blocks" as much as possible
- Optimize query block by block
- Enumerate logical plans (already covered)
- Estimate the cost of plans
- Pick a plan with acceptable cost
- Focus: select-project-join blocks

Cost estimation

Physical plan example:
PROJECT (Group.name) I

MERGE-JOIN (gid)
SORT (gid) SCAN (Group)
Input to SORT(gid):

- We have: cost estimation for each operator
- Example: SORT(gid) takes O (B (input) $\times \log _{M} B$ (input))
- But what is B (input)?
- We need: size of intermediate results

Cardinality estimation

Selections with equality predicates

- $Q: \sigma_{A=v} R$
- Suppose the following information is available
- Size of $R:|R|$
- Number of distinct A values in $R:\left|\pi_{A} R\right|$
- Assumptions
- Values of A are uniformly distributed in R
- Values of v in Q are uniformly distributed over all $R . A$ values
- $|Q| \approx{ }^{|R|} /\left|\pi_{A} R\right|$
- Selectivity factor of $(A=v)$ is $1 /\left|\pi_{A R}\right|$

Conjunctive predicates

- $Q: \sigma_{A=u \wedge B={ }^{2}} R$
- Additional assumptions
- $(A=u)$ and $(B=v)$ are independent
- Counterexample: major and advisor
- No "over"-selection
- Counterexample: A is the key
- $|Q| \approx|R| /\left|\pi_{A} R\right| \cdot\left|\pi_{B} R\right|$
- Reduce total size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_{A \neq v} R$
- $|Q| \approx|R| \cdot\left(1-1 /\left|\pi_{A} R\right|\right)$
- Selectivity factor of $\neg p$ is (1- selectivity factor of p)
- $Q: \sigma_{A=u \vee B=v} R$
- $|Q| \approx|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|\right)$?
- No! Tuples satisfying $(A=u)$ and $(B=v)$ are counted twice
$-|Q| \approx|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|-1 /\left|\pi_{A} R\right|\left|\pi_{B} R\right|\right)$
- Inclusion-exclusion principle

Range predicates

- $Q: \sigma_{A>v} R$
- Not enough information!
- Just pick, say, $|Q| \approx|R| \cdot 1 / 3$
- With more information
- Largest R.A value: high (R.A)
- Smallest R.A value: low (R.A)
- $|Q| \approx|R| \cdot \frac{\operatorname{high}(R . A)-v}{\operatorname{high}(R . A)-\operatorname{low}(R . A)}$
- In practice: sometimes the second highest and lowest are used instead
- The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
- Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
- That is, if $\left|\pi_{A} R\right| \leq\left|\pi_{A} S\right|$ then $\pi_{A} R \subseteq \pi_{A} S$
- Certainly not true in general
- But holds in the common case of foreign key joins
- $|Q| \approx \frac{|R| \cdot|S|}{\max \left(\left|\pi_{A} R\right|,\left|\pi_{A} S\right|\right)}$
- Selectivity factor of R. $A=S . A$ is $1 / \max \left(\left|\pi_{A} R\right|,\left|\pi_{A} S\right|\right)$

Multiway equi-join

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- What is the number of distinct C values in the join of R and S ?
- Assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if A is in R but not S, then $\pi_{A}(R \bowtie S)=\pi_{A} R$
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont'd)

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- Start with the product of relation sizes
$\cdot|R| \cdot|S| \cdot|T|$
- Reduce the total size by the selectivity factor of each join predicate
- R.B $=$ S. $B:{ }^{1} / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)$
- S.C $=$ T.C: ${ }^{1} / \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)$
$\cdot|Q| \approx \frac{|R| \cdot|S| \cdot|T|}{\max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right) \cdot \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)}$

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Maybe okay if we overestimate or underestimate consistently
- May lead to very nasty optimizer "hints"

```
SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
```

- Not covered: better estimation using histograms

Search strategy

Search space

- Huge!
- "Bushy" plan example:

- Just considering different join orders, there are $\frac{(2 n-2)!}{(n-1)!}$ bushy plans for $R_{1} \bowtie \cdots \bowtie R_{n}$
- 30240 for $n=6$
- And there are more if we consider:
- Multiway joins
- Different join methods
- Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
- Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple timesyou will not want it to be a complex subtree
- How many left-deep plans are there for $R_{1} \bowtie \cdots \bowtie R_{n}$?
- Significantly fewer, but still lots- n ! $(720$ for $n=6)$

A greedy algorithm

- S_{1}, \ldots, S_{n}
- Say selections have been pushed down; i.e., $S_{i}=\sigma_{p}\left(R_{i}\right)$
- Start with the pair S_{i}, S_{j} with the smallest estimated size for $S_{i} \bowtie S_{j}$
- Repeat until no relation is left:

Pick S_{k} from the remaining relations such that the join of S_{k} and the current result yields an intermediate result of the smallest size

A dynamic programming approach

- Generate optimal plans bottom-up
- Pass 1: Find the best single-table plans (for each table)
- Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
-...
- Pass k : Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
Well, not quite...

The need for "interesting order"

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
- Subplan of the optimal plan is not optimal!
-Why?
- The result of the sort-merge join of R and S is sorted on A
- This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

When picking the best plan

- Comparing their costs is not enough
- Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
- Plans are now partially ordered
- Plan X is better than plan Y if
- Cost of X is lower than Y, and
- Interesting orders produced by X "subsume" those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
- At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
- Need statistics to estimate sizes of intermediate results
- Greedy approach
- Dynamic programming approach

