
Query Optimization
Introduction to Databases

CompSci 316 Fall 2019

Announcements (Mon., Nov. 18)

• Homework 4 due in one week
• Except Problem X2, which will be due in two weeks

• Homework 3 grades released
• See Sakai for sample solution

• Project milestone 2 feedback released
• Weekly piazza update due this Wed.

2

Query optimization

• One logical plan → “best” physical plan
• Questions
• How to enumerate possible plans
• How to estimate costs
• How to pick the “best” one

• Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

3

1 second 1 hour1 minute

Any of these will do

Plan enumeration in relational algebra

• Apply relational algebra equivalences
FJoin reordering: × and ⋈ are associative and

commutative (except column ordering, but that is
unimportant)

4

⋈

⋈

$

%

⋈

⋈

$ #

%

⋈

⋈

%

$
…= = =

More relational algebra equivalences

• Convert !"-× to/from ⋈": !" %×& = % ⋈" &
• Merge/split !’s: !"(!")% = !"(∧")%
• Merge/split +’s: +,- +,)% = +,(%, where .- ⊆ .0
• Push down/pull up !:
!"∧"1∧"2 % ⋈"3 & = !"1% ⋈"∧"3 !"2& , where
• 45 is a predicate involving only % columns
• 46 is a predicate involving only & columns
• 4 and 47 are predicates involving both % and & columns

• Push down +: +, !"% = +, !" +,,3% , where
• .7 is the set of columns referenced by 4 that are not in .

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new ones

5

Relational query rewrite example
6

!Group.name"User.name=“Bart” ∧ User.uid = Member.uid ∧Member.gid = Group.gid
×

Member
Group×

User !Group.name"Member.gid = Group.gid
×

Member

Group

×

User

"User.uid = Member.uid

"name = “Bart”

Push down "
!Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

"name = “Bart”

Convert "&-× to ⋈&

Heuristics-based query optimization

• Start with a logical plan
• Push selections/projections down as much as

possible
• Why? Reduce the size of intermediate results
• Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
• Why? Reduce the size of intermediate results
• Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

7

SQL query rewrite

• More complicated—subqueries and views divide a
query into nested “blocks”
• Processing each block separately forces particular join

methods and join order

• Even if the plan is optimal for each block, it may not be
optimal for the entire query

• Unnest query: convert subqueries/views to joins

FWe can just deal with select-project-join queries

• Where the clean rules of relational algebra apply

8

SQL query rewrite example
• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);
• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;
• Wrong—consider two Bart’s, each joining two groups

• SELECT name
FROM (SELECT DISTINCT User.uid, name

FROM User, Member
WHERE User.uid = Member.uid);

• Right—assuming User.uid is a key

9

Dealing with correlated subqueries
• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
• SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt

FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';
• New subquery is inefficient (it computes the size for
every group)
• Suppose a group is empty?

10

“Magic” decorrelation
• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
• WITH Supp_Group AS
(SELECT * FROM Group WHERE name LIKE 'Springfield%'),

Magic AS
(SELECT DISTINCT gid FROM Supp_Group),

DS AS
((SELECT Group.gid, COUNT(*) AS cnt

FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION

(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

11

Process the outer query without the subquery

Collect bindings

Evaluate the subquery with bindings

Finally, refine
the outer query

Heuristics- vs. cost-based optimization

• Heuristics-based optimization
• Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks” as much as

possible
• Optimize query block by block

• Enumerate logical plans (already covered)

• Estimate the cost of plans
• Pick a plan with acceptable cost

• Focus: select-project-join blocks

12

Cost estimation

• We have: cost estimation for each operator
• Example: SORT(gid) takes ! " input ×log, " input

• But what is " input ?

• We need: size of intermediate results

13

PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)

MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(gid):

14

http://www.learningresources.com/product/estimation+station.do

Cardinality estimation

Selections with equality predicates

• !: "#$%&
• Suppose the following information is available
• Size of &: &
• Number of distinct ' values in &: (#&

• Assumptions
• Values of ' are uniformly distributed in &
• Values of) in ! are uniformly distributed over all
&. ' values

• ! ≈ ,- ./-
• Selectivity factor of ' =) is ,1 ./-

15

Conjunctive predicates

• !: "#$% ∧ '$()
• Additional assumptions
• * = , and - = . are independent

• Counterexample: major and advisor
• No “over”-selection

• Counterexample: * is the key

• ! ≈ 01 231 ⋅ 251
• Reduce total size by all selectivity factors

16

Negated and disjunctive predicates

• !: "#$%&
• ! ≈ & ⋅ 1 − +, -./

• Selectivity factor of ¬1 is (1 − selectivity factor of 1)

• !: "#23 ∨ 52%&
• ! ≈ & ⋅ +, -./ + +, -7/ ?

• No! Tuples satisfying 8 = : and ; = < are counted twice

• ! ≈ & ⋅ +, -./ + +, -7/ − +, -./ -7/
• Inclusion-exclusion principle

17

Range predicates

• !: "#$%&
• Not enough information!
• Just pick, say, ! ≈ & ⋅ ⁄* +

• With more information
• Largest R.A value: high &. 0
• Smallest R.A value: low &. 0
• ! ≈ & ⋅ 4564 7.# 8%

4564 7.# 89:; 7.#
• In practice: sometimes the second highest and lowest

are used instead
• The highest and the lowest are often used by inexperienced

database designer to represent invalid values!

18

Two-way equi-join

• !: " #, % ⋈ ' #, (
• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer

distinct values for the join attribute) joins with some
tuple in the other relation
• That is, if)*" ≤)*' then)*" ⊆)*'
• Certainly not true in general
• But holds in the common case of foreign key joins

• ! ≈ . ⋅ 0
123 45. , 450

• Selectivity factor of ". # = '. # is 89 123 45. , 450

19

Multiway equi-join

• !: " #, % ⋈ ' %, (⋈) (, *
• What is the number of distinct (values in the join

of " and '?
• Assumption: preservation of value sets
• A non-join attribute does not lose values from its set of

possible values
• That is, if # is in " but not ', then +, " ⋈ ' = +,"
• Certainly not true in general
• But holds in the common case of foreign key joins (for

value sets from the referencing table)

20

Multiway equi-join (cont’d)

• !: " #, % ⋈ ' %, (⋈) (, *
• Start with the product of relation sizes
• " ⋅ ' ⋅)

• Reduce the total size by the selectivity factor of
each join predicate
• ".% = '. %: ./ 012 345 , 346
• '. (=). (: ./ 012 376 , 378
• ! ≈ 5 ⋅ 6 ⋅|8|

012 345 , 346 ⋅012 376 , 378

21

Cost estimation: summary

• Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)
• Lots of assumptions and very rough estimation
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate

consistently
• May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

• Not covered: better estimation using histograms

22

Search strategy
23

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAAAKE/mi8ejfZ8S7U/s1600/cornMaze.jpg

Search space

• Huge!
• “Bushy” plan example:

• Just considering different join orders, there are
!"#! !
"#% ! bushy plans for &% ⋈ ⋯ ⋈ &"
• 30240 for - = 6

• And there are more if we consider:
• Multiway joins
• Different join methods
• Placement of selection and projection operators

24

⋈

&! &% &0
&1 &2

⋈ ⋈
⋈

Left-deep plans

• Heuristic: consider only “left-deep” plans, in which
only the left child can be a join
• Tend to be better than plans of other shapes, because many

join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for !" ⋈ ⋯ ⋈ !%?
• Significantly fewer, but still lots— &! (720 for & = 6)

25

⋈

!- !"
!.

!/
!0⋈

⋈
⋈

A greedy algorithm

• !", … , !%
• Say selections have been pushed down; i.e., !& = () *&

• Start with the pair !&, !+ with the smallest estimated
size for !& ⋈ !+
• Repeat until no relation is left:

Pick !- from the remaining relations such that the join
of !- and the current result yields an intermediate
result of the smallest size

26

Current subplan

… , !-, !., !/,…
Remaining

relations
to be joined

Pick most efficient join method

⋈
!-

Minimize expected size

A dynamic programming approach

• Generate optimal plans bottom-up
• Pass 1: Find the best single-table plans (for each table)
• Pass 2: Find the best two-table plans (for each pair of

tables) by combining best single-table plans
• …
• Pass !: Find the best !-table plans (for each combination

of ! tables) by combining two smaller best plans found
in previous passes
• …

• Rationale: Any subplan of an optimal plan must also
be optimal (otherwise, just replace the subplan to
get a better overall plan)

FWell, not quite…

27

The need for “interesting order”

• Example: ! ", $ ⋈ & ", ' ⋈ (",)
• Best plan for ! ⋈ &: hash join (beats sort-merge join)
• Best overall plan: sort-merge join ! and &, and then

sort-merge join with (
• Subplan of the optimal plan is not optimal!

• Why?
• The result of the sort-merge join of ! and & is sorted on "
• This is an interesting order that can be exploited by later

processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!

28

Dealing with interesting orders

When picking the best plan
• Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered
• Plan ! is better than plan " if

• Cost of ! is lower than ", and
• Interesting orders produced by ! “subsume” those produced by "

• Need to keep a set of optimal plans for joining every
combination of # tables
• At most one for each interesting order

29

Summary

• Relational algebra equivalence
• SQL rewrite tricks
• Heuristics-based optimization
• Cost-based optimization
• Need statistics to estimate sizes of intermediate results
• Greedy approach
• Dynamic programming approach

30

