Parallel Data Processing!

Introduction to Databases
CompSci 316 Fall 2019

|
E’ COMPUTER SCIENCE fSome contents are drawn and adapted from slides by
Madga Balazinska at U. Washington

Announcements (Wed., Nov. 20)

due Mon. after Thanksgiving break
* Piazza project weekly progress update due today

Announcements (Mon., Nov. 25)

due in a week
* No Piazza project weekly update due this week

Parallel processing

* Improve performance by executing multiple
operations in parallel

* Cheaper to scale than relying on a single
increasingly more powerful processor

* Performance metrics
, in terms of completion time
, in terms of time per unit problem size

: completion time X # processors X (cost per
processor per unit time)

Speedup

* Increase # processors — how much faster can we
solve the same problem?

problem size is fixed

speedup

1%

1 # processors

Scaleup

* Increase # processors and problem size
proportionally - can we solve bigger problems in
the same time?

problem size is fixed

1% linear scaleup (ideal)

effective unit speed
vs. baseline

'1 # processors & problem size

Cost

cost

* Fix problem size

I1X |

linear speedup (ideal)

processors

* Increase problem size
proportionally with A
processors

linear scaleup (ideal)

cost per
unit problem size

>
1 # processors & problem size

Why linear speedup/scaleup is hard

* Startup
* Overhead of starting useful work on many processors

* Communication
* Cost of exchanging data/information among processors

* Interference
* Contention for resources among processors

e Skew
* Slowest processor becomes the bottleneck

Shared-nothing architecture

connection net

.
I = I 3

* Most scalable (vs. shared-memory and shared-disk)

* Minimizes interference by minimizing resource sharing
* Can use commodity hardware

* Also most difficult to program

Parallel query evaluation opportunities

parallelism
* Each query can run on a different processor

parallelism
* A query runs on multiple processors
* Each operator can run on a different processor

parallelism

* An operator can run on multiple processors, each
working on a different “split” of data/operation

wFocus of this lecture

A brief tour of three approaches

o 6 ”.

, €.8., Teradata

Same abstractions (relational data model, SQL,
transactions) as a regular DBMS

Parallelization handled behind the scene

* “BD (Big Data)” 15 years go: , e.g., Hadoop
Easy scaling out (e.g., adding lots of commodity servers)
and failure handling

Input/output in files, not tables

Parallelism exposed to programmers

"’ today:

* Compared to MapReduce: smarter memory usage,
recovery, and optimization

Higher-level DB-like abstractions (but still no updates)

MS
Parallel DB
E.g.:

Horizontal data partitioning

* Split a table R into p chunks, each stored at one of
the p processors

* Splitting strategies:

assigns the i-th row assigned to chunk

(i mod p)
assigns row r to
chunk (h(r.A4) mod p)
partitioning the

range of R. A values into p ranges, and assigns row r to
the chunk whose corresponding range contains r. A

Teradata: an example parallel DBMS

* Hash-based partitioning of Customer on cid

A Customer row is inserted \L

hash(cid)

Each Customer is assigned to an AMP

AMP 1 AMP 5 AMP ... AMP ...
AMP 2 AMP 6 . AMP ... AMP ...
AMP 3 AMP 7 AMP ... AMP ...
AMP 4 AMP 8 AMP ... AMP ...

Node 1 Node 2

Example query in Teradata

* Find all orders today, along with the customer info

SELECT =
FROM Order o, Customer c
WHERE o.cid = c.cid

AND o.date = today();

join
o.cid = c.cid

/ filter | o.date =

scan today ()

Customer c scan

Order o

Teradata example: scan-filter-hash

scan &

Customer c

AMP

AMP

AMP

Consistent with

/ partitioning of

AMP

AMP

4

rd

AMP

Customer; each
Order row is
routed to the
AMP storing
the Customer
row with the
same cid

Teradata example: hash join

o.cid = c.cid

filter | o.date =
today ()

scan

Order o

AMP

AMP

AMP

Each AMP processes
Order and Customer

rows with the same

cid hash

© TiEEEEm

MapReduce: motivation

* Many problems can be processed in this pattern:
* Given a lot of unsorted data
: extract something of interest from each record
: group the intermediate results in some way

: further process (e.g., aggregate, summarize,
analyze, transform) each group and write final results

(Customize map and reduce for problem at hand)

% Make this pattern easy to program and
efficient to run
* Original Google paperin OSDI 2004

* Hadoop has been the most popular open-source
implementation

* Spark still supports it

M/R programming model

* Input/output: each a collection of key/value pairs
* Programmer specifies two functions

* Processes each input key/value pair, and produces a list of
intermediate key/value pairs

* Processes all intermediate values associated with the same key,
and produces a list of result values (usually just one for the key)

21

M/R execution

Distributed file system
I T I T~ Final results go

to distributed
file system
Intermediate

Reduce tasks: R R R

Shuffle: results go to
local disk
Map tasks: Each map

task gets
an input
“split”

Data not necessary local
Distributed file system (e.g., HDFS)

M/R example: word count

* Expected input: a huge file (or collection of many
files) with millions of lines of English text

* Expected output: list of (word, count) pairs
* Implementation

 Given aline, split it into words, and output (w, 1) for each word
w in the line

* Given a word w and list L of counts associated with it, compute
S = Y counter COUnt and output (w, s)
* Optimization: before shuffling, map can pre-aggregate
word counts locally so there is less data to be shuftled

* This optimization can be implemented in Hadoop as a
““combiner”

Some implementation details

* Thereis one “ ” hode

* Input file gets divided into m “splits,” each a
contiguous piece of the file

 Master assigns m map tasks (one per split) to
“ "’ and tracks their progress

)

* Map output is partitioned into r *

* Master assigns r reduce tasks (one per region) to
workers and tracks their progress

* Reduce workers read regions from the map
workers’ local disks

24

M/R execution timeline

time

* When there are more tasks than workers, tasks
execute in “waves”
* Boundaries between waves are usually blurred

* Reduce tasks can’t start until all map tasks are done

More implementation details

* Numbers of map and reduce tasks

* Larger is better for load balancing
e But more tasks add overhead and communication

* Worker failure
* Master pings workers periodically

* If one is down, reassign its split/region to another
worker

* “Straggler”: a machine that is exceptionally slow

* Pre-emptively run the last few remaining tasks
redundantly as backup

M/R example: Hadoop TeraSort

« Expected input: a collection of (key, payload) pairs
* Expected output: sorted (key, payload) pairs

* Implementation

* Using a small sample of input, find r — 1 key values that
divides the key range into r subranges where # pairs is
roughly equal across them

* If k falls within the j-th subrange

 Sort the list of (k, payload) pairs by k and output

Parallel DBMS vs. MapReduce

* Schema + intelligent indexing/partitioning
* Can stream data from one operator to the next
* SQL + automatic optimization

No schema, no indexing
Higher scalability and elasticity

 Just throw new machines in!
Better handling of failures and stragglers

Black-box map/reduce functions — hand optimization

& pySpark

We will focus on the Python dialect,
although Spark supports multiple [anguages

Addressing inefficiencies in Hadoop

* Hadoop: no automatic optimization
wSpark

* Allow program to be a DAG of DB-like operators, with
less reliance on black-box code

* Delay evaluation as much as possible
* Fuse operators into stages and compile each stage

* Hadoop: too many I/Os
* E.g., output of each M/R job is always written to disk
* But such checkpointing simplifies failure recovery
wSpark
* Keep intermediate results in memory
* Instead of checkpointing, use “lineage’ for recovery

RDDs

* Spark stores all intermediate results as
(RDDs)

* Immutable, memory-resident, and distributed across
multiple nodes

* Spark also tracks the “lineage” of RDDs, i.e., what
expressions computed them

* Can be done at the partition level
What happens to a RDD if a node crashes?
* The partition of this RDD on this node will be lost

* But with lineage, the master simply recomputes the
a lost partition when needed

* Requires recursive recomputation if input RDD partitions
are also missing

Example: votes & explanations

e Raw data reside in lots of JSON files obtained from
ProPublica API

* Each vote: URI (id), question, description, date,
time, result

* Each explanation: member id, name, state, party,

vote URI, date, text, category
* E.g., “P000523”, “David E. Price”, “NC”’, “D”,
“https://api.propublica.org/congress/vi/115/house/sessio
ns/2/votes/269.json”, “2018-06-20", ““Mr. Speaker, due to
adverse weather and numerous flight delays and
cancellations in North Carolina, | was unable to vote
yesterday during Roll Call 269, the motion...”, “Travel

difficulties”

Basic M/R with Spark RDD

explain fields = ('member id', 'name', 'state', 'party', 'vote api uri’,
'date', 'text', 'category')

def map(record):
if len(record) == len(explain fields):
return [(record[explain fields.index('category')], 1)]
else:

return []

def reduce(record):
key, vals = record

return [(key, len(vals))]

Basic M/R with Spark RDD

rdd = sc. ...

result = rdd\ Be lazy: build up a DAG of

.flatMap (map) \ “transformations,” but
.groupByKey () \ no evaluation yet!
.flatMap()\

Optimize & evaluate

.sortBy(lambda x: (-x[1], x[0])) the whole DAG only

for row in result:icollect(): when needed, e.g.,
print('|'.join(str(field) for field in row)) triggered by “actions”
like collect()

: Spark RDDs support map() and reduce() too,
but they are not the same as those in MapReduce

Moving “BD” to “DB”

Each elementin a RDD is an opaque object—hard to
program
* Why don’t we make each element a “row” with

named columns—easier to refer to in processing

* RDD becomes a (name from the R language)
e Still immutable, memory-resident, and distributed

* Then why don’t we have database-like operators
instead of just MapReduce?
* Knowing their semantics allows more optimization

 Spark in fact pushed the idea further
* Spark = DataFrame with type-checking
* And just run SQL over Datasets using !

Spark DataFrame

from pyspark.sql import functions as F

explain fields = ('member id', 'name', 'state', 'party', 'vote api uri’,
'date', 'text', 'category?’)

df explain = sc.

df explain.groupBy('category'))\
.agg(F.count('name"'))\
.withColumnRenamed ('count(name)', 'count'))\
.sort(['count', 'category'], ascending=[0, 1])\

.show(20, truncate=False)

Another Spark DataFrame Example

from pyspark.sql import functions as F
vote fields = ('vote uri','question','description','date','time', ' 'result')

explain fields = ('member id', 'name', 'state', 'party', 'vote api uri’,
'date', 'text', 'category’)

df votes = sc.

df explain = sc.

df votes.join(df explain.select('vote api uri', 'name'),
df votes.vote uri == df explain.vote api uri, ' ")\
.groupBy('vote uri', 'date', 'time', 'question', 'description', 'result'))\
.agg(F.count('name'), F. ('name'))\
.withColumnRenamed('count(name)', 'count'))\
.withColumnRenamed('collect list(name)', 'names'))\
.sort(['count', 'date', 'time'], ascending=[0, 0, 0])\
.select('vote uri', 'date', 'time', 'question', 'description', 'result’,
'count', 'names?’)\

.show (20, truncate=False)

Summary

o ¢ ”.

 Standard relational operators
* Automatic optimization
* Transactions

« “BD” 10 years go:
* User-defined map and reduce functions
* Mostly manual optimization
* No updates/transactions

. “BD” today:

* Still supporting user-defined functions, but more
standard relational operators than older “BD” systems

* More automatic optimization than older “BD” systems
* No updates/transactions

