Transaction Processing

Introduction to Databases CompSci 316 Fall 2019

Announcements (Mon., Dec. 2)

- Homework 4 due today
 - Except X2 (due Wed.)
- Project demos—sign-up instructions emailed
 - Early in-class demos this Wed. if you are up for it
 - Last weekly progress update due Wed. on Piazza
- Final exam Thu. Dec. 12 2-5pm
 - Open-book, open-notes
 - Comprehensive, but with strong emphasis on the second half of the course
 - Sample final will be posted tomorrow
 - Past Gradiance exercises will be reopened as a study aid
 - Feel free to redo any; your grades have already been recorded

Review

ACID

- Atomicity: TX's are either completely done or not done at all
- Consistency: TX's should leave the database in a consistent state
- Isolation: TX's must behave as if they are executed in isolation
- Durability: Effects of committed TX's are resilient against failures

SQL transactions

```
-- Begins implicitly
SELECT ...;
UPDATE ...;
ROLLBACK | COMMIT;
```

Concurrency control

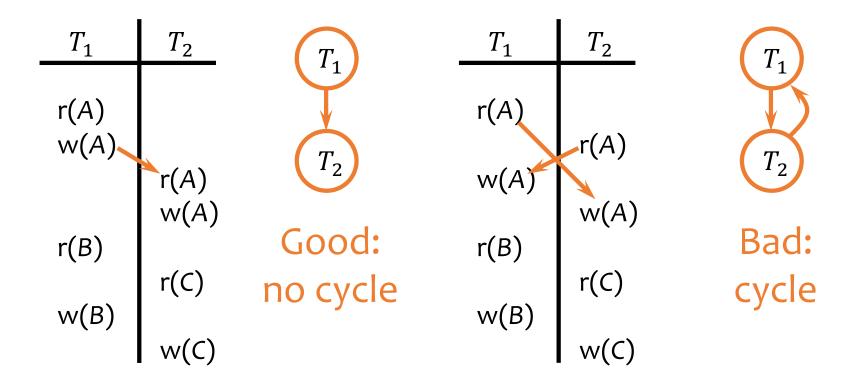
• Goal: ensure the "I" (isolation) in ACID

```
T_1:
          T_2:
read(A); read(A);
write(A); write(A);
read(B); read(C);
write(B); write(C);
commit;
           commit;
```

Good versus bad schedules

Good!		Bad!		Good! (But why?)	
T_1	T_2	T_1	T_2	T_1	T_2
r(A) w(A)		r(A) Read 400	r(A)	r(A) w(A)	
r(B) w(B)		Read 400 Write W(A) 400 – 100 r(B) w(B)	Réad 40 $w(A)_{W(rit)}$	00	r(A) w(A)
	r(A) w(A)	r(B)	400 - 5	o r(B)	r(C)
	r(C)	w(B)		w(B)	
	w(C)		w(C)		w(C)

Serial schedule


- Execute transactions in order, with no interleaving of operations
 - $T_1.r(A)$, $T_1.w(A)$, $T_1.r(B)$, $T_1.w(B)$, $T_2.r(A)$, $T_2.w(A)$, $T_2.r(C)$, $T_2.w(C)$
 - T_2 .r(A), T_2 .w(A), T_2 .r(C), T_2 .w(C), T_1 .r(A), T_1 .w(A), T_1 .r(B), T_1 .w(B)
 - Isolation achieved by definition!
- Problem: no concurrency at all
- Question: how to reorder operations to allow more concurrency

Conflicting operations

- Two operations on the same data item conflict if at least one of the operations is a write
 - r(X) and w(X) conflict
 - w(X) and r(X) conflict
 - w(X) and w(X) conflict
 - r(X) and r(X) do not conflict
 - r/w(X) and r/w(Y) do not conflict
- Order of conflicting operations matters
 - E.g., if T_1 .r(A) precedes T_2 .w(A), then conceptually, T_1 should precede T_2

Precedence graph

- A node for each transaction
- A directed edge from T_i to T_j if an operation of T_i precedes and conflicts with an operation of T_j in the schedule

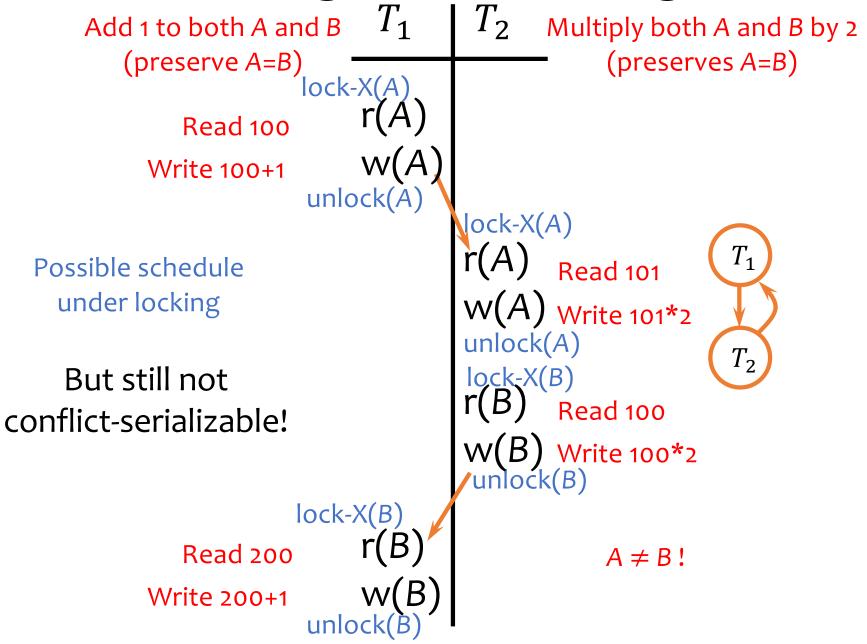
Conflict-serializable schedule

- A schedule is conflict-serializable iff its precedence graph has no cycles
- A conflict-serializable schedule is equivalent to some serial schedule (and therefore is "good")
 - In that serial schedule, transactions are executed in the topological order of the precedence graph
 - You can get to that serial schedule by repeatedly swapping adjacent, non-conflicting operations from different transactions

Locking

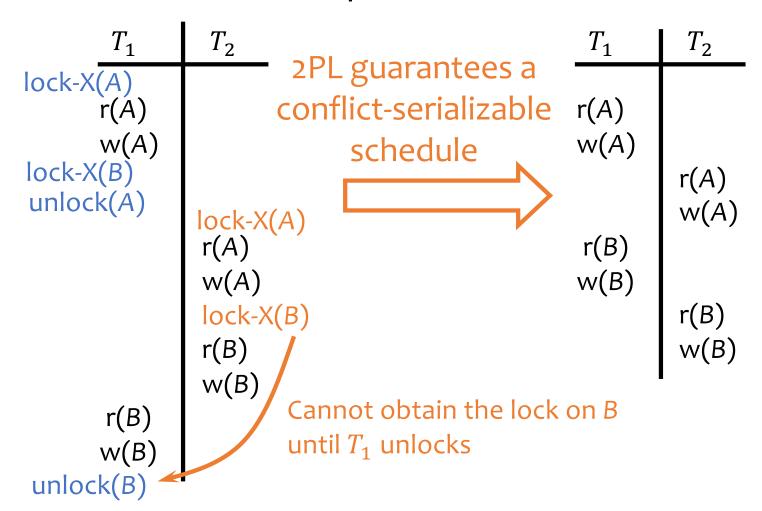
- Rules
 - If a transaction wants to read an object, it must first request a shared lock (S mode) on that object
 - If a transaction wants to modify an object, it must first request an exclusive lock (X mode) on that object
 - Allow one exclusive lock, or multiple shared locks

Mode of the lock requested


Mode of lock(s) currently held by other transactions

	S	X
S	Yes	No
X	No	No

Grant the lock?


Compatibility matrix

Basic locking is not enough

Two-phase locking (2PL)

- All lock requests precede all unlock requests
 - Phase 1: obtain locks, phase 2: release locks

Remaining problems of 2PL

T_1	T_2
r(A) w(A)	~(
r(B) w(B)	r(A) w(A)
Abort!	r(B) w(B)

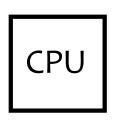
- T_2 has read uncommitted data written by T_1
- If T_1 aborts, then T_2 must abort as well
- Cascading aborts possible if other transactions have read data written by T_2
- Even worse, what if T_2 commits before T_1 ?
 - Schedule is not recoverable if the system crashes right after T_2 commits

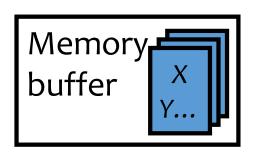
Strict 2PL

- Only release locks at commit/abort time
 - A writer will block all other readers until the writer commits or aborts

Used in many commercial DBMS

Recovery


• Goal: ensure "A" (atomicity) and "D" (durability)



Execution model

To read/write X

- The disk block containing X must be first brought into memory
- *X* is read/written in memory
- The memory block containing X, if modified, must be written back (flushed) to disk eventually

Failures

- System crashes in the middle of a transaction T;
 partial effects of T were written to disk
 - How do we undo T (atomicity)?
- System crashes right after a transaction T commits;
 not all effects of T were written to disk
 - How do we complete T (durability)?

Naïve approach

- Force: When a transaction commits, all writes of this transaction must be reflected on disk
 - Without force, if system crashes right after T commits, effects of T will be lost
 - Problem: Lots of random writes hurt performance
- No steal: Writes of a transaction can only be flushed to disk at commit time
 - With steal, if system crashes before T commits but after some writes of T have been flushed to disk, there is no way to undo these writes
 - Problem: Holding on to all dirty blocks requires lots of memory

Logging

Log

- Sequence of log records, recording all changes made to the database
- Written to stable storage (e.g., disk) during normal operation
- Used in recovery
- Hey, one change turns into two—bad for performance?
 - But writes are sequential (append to the end of log)
 - Can use dedicated disk(s) to improve performance

Undo/redo logging rules

- When a transaction T_i starts, $\log \langle T_i, \text{ start} \rangle$
- Record values before and after each modification:
 \(T_i, X, old_value_of_X, new_value_of_X \)
 - T_i is transaction id and X identifies the data item
- A transaction T_i is committed when its commit log record $\langle T_i, \text{ commit} \rangle$ is written to disk
- Write-ahead logging (WAL): Before X is modified on disk, the log record pertaining to X must be flushed
 - Without WAL, system might crash after X is modified on disk but before its log record is written to disk—no way to undo
- No force: A transaction can commit even if its modified memory blocks have not be written to disk (since redo information is logged)
- Steal: Modified memory blocks can be flushed to disk anytime (since undo information is logged)

Undo/redo logging example

 T_1 (balance transfer of \$100 from A to B)

```
read(A, a); a = a - 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);
commit;
```

Memory buffer

A = 800 700

B = 400 500

Steal: can flush before commit

No force: can flush after commit

```
Log

⟨ T<sub>1</sub>, start ⟩

⟨ T<sub>1</sub>, A, 800, 700 ⟩

⟨ T<sub>1</sub>, B, 400, 500 ⟩

⟨ T<sub>1</sub>, commit ⟩
```

No restriction (except WAL) on when memory blocks can/should be flushed

Checkpointing

Where does recovery start?

Naïve approach:

- To checkpoint:
 - Stop accepting new transactions (lame!)
 - Finish all active transactions
 - Take a database dump
- To recover:
 - Start from last checkpoint

Fuzzy checkpointing

- Determine S, the set of (ids of) currently active transactions, and log \(\) begin-checkpoint S \(\)
- Flush all blocks (dirty at the time of the checkpoint) at your leisure
- Log (end-checkpoint begin-checkpoint_location)
- Between begin and end, continue processing old and new transactions

Recovery: analysis and redo phase

- Need to determine U, the set of active transactions at time of crash
- Scan log backward to find the last end-checkpoint record and follow the pointer to find the corresponding (start-checkpoint S)
- Initially, let *U* be *S*
- Scan forward from that start-checkpoint to end of the log
 - For a log record (T, start), add T to U
 - For a log record (T, commit | abort), remove T from U
 - For a log record (T, X, old, new), issue write(X, new)
 - Basically repeats history!

Recovery: undo phase

- Scan log backward
 - Undo the effects of transactions in U
 - That is, for each log record (T, X, old, new) where T is in U, issue write(X, old), and log this operation too (part of the "repeating-history" paradigm)
 - Log (T, abort) when all effects of T have been undone

An optimization

 Each log record stores a pointer to the previous log record for the same transaction; follow the pointer chain during undo

Summary

- Concurrency control
 - Serial schedule: no interleaving
 - Conflict-serializable schedule: no cycles in the precedence graph; equivalent to a serial schedule
 - 2PL: guarantees a conflict-serializable schedule
 - Strict 2PL: also guarantees recoverability
- Recovery: undo/redo logging with fuzzy checkpointing
 - Normal operation: write-ahead logging, no force, steal
 - Recovery: first redo (forward), and then undo (backward)