
Transaction Processing
Introduction to Databases

CompSci 316 Fall 2019

Announcements (Mon., Dec. 2)

• Homework 4 due today
• Except X2 (due Wed.)

• Project demos—sign-up instructions emailed
• Early in-class demos this Wed. if you are up for it
• Last weekly progress update due Wed. on Piazza

• Final exam Thu. Dec. 12 2-5pm
• Open-book, open-notes
• Comprehensive, but with strong emphasis on the

second half of the course
• Sample final will be posted tomorrow
• Past Gradiance exercises will be reopened as a study aid

• Feel free to redo any; your grades have already been recorded

2

Review
• ACID
• Atomicity: TX’s are either completely done or not done

at all
• Consistency: TX’s should leave the database in a

consistent state
• Isolation: TX’s must behave as if they are executed in

isolation
• Durability: Effects of committed TX’s are resilient against

failures
• SQL transactions

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;

3

Concurrency control

• Goal: ensure the “I” (isolation) in ACID

4

A B C

!":
read(A);
write(A);
read(B);
write(B);
commit;

!#:
read(A);
write(A);
read(C);
write(C);
commit;

Good versus bad schedules
5

!" !#

r(A)
w(A)
r(B)
w(B)

r(A)
w(A)
r(C)
w(C)

!" !#

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

!" !#

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

Good! Good! (But why?)Bad!

Read 400
Read 400

Write
400 – 100 Write

400 – 50

Serial schedule

• Execute transactions in order, with no interleaving
of operations
• !".r(A), !".w(A), !".r(B), !".w(B), !#.r(A), !#.w(A),
!#.r(C), !#.w(C)
• !#.r(A), !#.w(A), !#.r(C), !#.w(C), !".r(A), !".w(A),
!".r(B), !".w(B)

FIsolation achieved by definition!

• Problem: no concurrency at all
• Question: how to reorder operations to allow more

concurrency

6

Conflicting operations

• Two operations on the same data item conflict if at
least one of the operations is a write
• r(X) and w(X) conflict
• w(X) and r(X) conflict
• w(X) and w(X) conflict
• r(X) and r(X) do not conflict
• r/w(X) and r/w(Y) do not conflict

• Order of conflicting operations matters
• E.g., if !".r(A) precedes !#.w(A), then conceptually, !"

should precede !#

7

Precedence graph

• A node for each transaction
• A directed edge from !" to !# if an operation of !"

precedes and conflicts with an operation of !# in
the schedule

8

!$!%

r(A)
w(A)

r(A)
w(A)

r(B)
r(C)

w(B)
w(C)

!$!%

r(A)
r(A)

w(A)
w(A)

r(B)
r(C)

w(B)
w(C)

!$

!%

Good:
no cycle

!$

!%

Bad:
cycle

Conflict-serializable schedule

• A schedule is conflict-serializable iff its precedence
graph has no cycles
• A conflict-serializable schedule is equivalent to

some serial schedule (and therefore is “good”)
• In that serial schedule, transactions are executed in the

topological order of the precedence graph
• You can get to that serial schedule by repeatedly

swapping adjacent, non-conflicting operations from
different transactions

9

Locking

• Rules
• If a transaction wants to read an object, it must first

request a shared lock (S mode) on that object
• If a transaction wants to modify an object, it must first

request an exclusive lock (X mode) on that object
• Allow one exclusive lock, or multiple shared locks

10

Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

S X

S Yes No

X No No

Basic locking is not enough
11

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

unlock(A)

unlock(B)
lock-X(B)

Possible schedule
under locking

But still not
conflict-serializable!

!"

!#

Read 100

Write 100+1

Read 101

Write 101*2

Read 100

Write 100*2

Read 200

Write 200+1

Add 1 to both A and B
(preserve A=B)

Multiply both A and B by 2
(preserves A=B)

A ≠ B !

!" !#

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks, phase 2: release locks

12

!" !#

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

lock-X(A)

lock-X(B)

unlock(B)

unlock(A)
lock-X(A)

lock-X(B)

Cannot obtain the lock on B
until !" unlocks

!" !#

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

2PL guarantees a
conflict-serializable

schedule

Remaining problems of 2PL

• !" has read uncommitted
data written by !#
• If !# aborts, then !" must

abort as well
• Cascading aborts possible if

other transactions have
read data written by !"

13

• Even worse, what if !" commits before !#?
• Schedule is not recoverable if the system crashes right

after !" commits

!# !"

r(A)
w(A)

r(A)
w(A)

r(B)
w(B)

r(B)
w(B)

Abort!

Strict 2PL

• Only release locks at commit/abort time
• A writer will block all other readers until the writer

commits or aborts

• Used in many commercial DBMS

14

Recovery

• Goal: ensure “A” (atomicity) and “D” (durability)

15

http://mnaxe.com/wp-content/uploads/2014/06/Notebook-Tablet-and-Laptop-Data-Recovery.jpg

Execution model

To read/write X
• The disk block containing X must be first brought

into memory
• X is read/written in memory
• The memory block containing X, if modified, must

be written back (flushed) to disk eventually

16

CPU
Memory
buffer

Disk

X
Y…

X
Y…

Failures

• System crashes in the middle of a transaction T;
partial effects of T were written to disk
• How do we undo T (atomicity)?

• System crashes right after a transaction T commits;
not all effects of T were written to disk
• How do we complete T (durability)?

17

Naïve approach

• Force: When a transaction commits, all writes of
this transaction must be reflected on disk
• Without force, if system crashes right after T commits,

effects of T will be lost
FProblem: Lots of random writes hurt performance

• No steal: Writes of a transaction can only be flushed
to disk at commit time
• With steal, if system crashes before T commits but after

some writes of T have been flushed to disk, there is no
way to undo these writes

FProblem: Holding on to all dirty blocks requires lots of
memory

18

Logging

• Log
• Sequence of log records, recording all changes made to

the database
• Written to stable storage (e.g., disk) during normal

operation
• Used in recovery

• Hey, one change turns into two—bad for
performance?
• But writes are sequential (append to the end of log)
• Can use dedicated disk(s) to improve performance

19

Undo/redo logging rules

• When a transaction Ti starts, log 〈 Ti, start 〉
• Record values before and after each modification:〈 Ti, X, old_value_of_X, new_value_of_X 〉

• Ti is transaction id and X identifies the data item
• A transaction Ti is committed when its commit log record〈 Ti, commit 〉 is written to disk
• Write-ahead logging (WAL): Before X is modified on disk,

the log record pertaining to X must be flushed
• Without WAL, system might crash after X is modified on disk but

before its log record is written to disk—no way to undo
• No force: A transaction can commit even if its modified

memory blocks have not be written to disk (since redo
information is logged)
• Steal: Modified memory blocks can be flushed to disk

anytime (since undo information is logged)

20

Undo/redo logging example
21

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈 T1, start 〉
〈 T1, A, 800, 700 〉
〈 T1, B, 400, 500 〉
〈 T1, commit 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

commit;

500

No force: can flush
after commit

No restriction (except WAL) on when memory blocks can/should be flushed

Checkpointing

• Where does recovery start?
Naïve approach:
• To checkpoint:
• Stop accepting new

transactions (lame!)
• Finish all active

transactions
• Take a database dump

• To recover:
• Start from last checkpoint

22

http://www.saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

Fuzzy checkpointing

• Determine S, the set of (ids of) currently active
transactions, and log 〈 begin-checkpoint S 〉
• Flush all blocks (dirty at the time of the checkpoint)

at your leisure
• Log 〈 end-checkpoint begin-checkpoint_location 〉
• Between begin and end, continue processing old

and new transactions

23

Recovery: analysis and redo phase

• Need to determine U, the set of active transactions
at time of crash
• Scan log backward to find the last end-checkpoint

record and follow the pointer to find the
corresponding 〈 start-checkpoint S 〉
• Initially, let U be S
• Scan forward from that start-checkpoint to end of

the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, commit | abort 〉, remove T from U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
FBasically repeats history!

24

Recovery: undo phase

• Scan log backward
• Undo the effects of transactions in U
• That is, for each log record 〈 T, X, old, new 〉where T is in
U, issue write(X, old), and log this operation too (part of
the “repeating-history” paradigm)
• Log 〈 T, abort 〉when all effects of T have been undone

FAn optimization
• Each log record stores a pointer to the previous log

record for the same transaction; follow the pointer chain
during undo

25

Summary

• Concurrency control
• Serial schedule: no interleaving
• Conflict-serializable schedule: no cycles in the

precedence graph; equivalent to a serial schedule
• 2PL: guarantees a conflict-serializable schedule
• Strict 2PL: also guarantees recoverability

• Recovery: undo/redo logging with fuzzy
checkpointing
• Normal operation: write-ahead logging, no force, steal
• Recovery: first redo (forward), and then undo

(backward)

26

