
(A Glimpse of)
Data Mining

Introduction to Databases
CompSci 316 Fall 2019

Announcements (Wed., Dec. 4)

• Homework 4 X2 due today
• Last Gradiance exercise due Fri.
• Project demos to start this weekend
• Deadline for signing up is tonight!
• Schedule will be announced via email by Fri.
• Last weekly progress update due tonight on Piazza

• Final exam Thu. Dec. 12 2-5pm
• Open-book, open-notes
• Comprehensive, but with strong emphasis on the

second half of the course
• Sample final + solution posted on Sakai

• Course evals: earn 2 free points on the final exam
• Deadline is Mon. Dec. 9

2

Data mining

• Data → knowledge
• DBMS meets AI and statistics
• Clustering, prediction (classification and

regression), association analysis, outlier analysis,
evolution analysis, etc.
• Usually complex statistical “queries” that are difficult to

answer → often specialized algorithms outside DBMS

• We will focus on frequent itemset mining, as a
sample problem in data mining

3

Mining frequent itemsets

• Given: a large database of
transactions, each
containing a set of items
• Example: market baskets

• Find all frequent itemsets
• A set of items ! is frequent

if no less than "#$%% of all
transactions contain !
• Examples: {diaper, beer},

{scanner, color printer}

4

TID items

T001 diaper, milk, candy

T002 milk, egg

T003 milk, beer

T004 diaper, milk, egg

T005 diaper, beer

T006 milk, beer

T007 diaper, beer

T008 diaper, milk, beer, candy

T009 diaper, milk, beer

… …

First try

• A naïve algorithm
• Keep a running count for each possible itemset
• For each transaction !, and for each itemset ", if !

contains " then increment the count for "
• Return itemsets with large enough counts

• Problem: The number of itemsets is huge!
• 2$, where % is the number of items

• Think: How do we prune the search space?

5

The Apriori property

• All subsets of a frequent itemset must also be
frequent
• Because any transaction that contains ! must also

contains subsets of !

☞If we have already verified that ! is infrequent,
there is no need to count !’s supersets because
they must be infrequent too

6

The Apriori algorithm

Multiple passes over the transactions
• Pass ! finds all frequent !-itemsets (i.e., itemsets of

size !)
• Use the set of frequent !-itemsets found in pass !

to construct candidate ! + 1 -itemsets to be
counted in pass ! + 1
• A ! + 1 -itemset is a candidate only if all its subsets of

size ! are frequent

7

Example: pass 1
8

Transactions

!"#$% = 20%

Frequent 1-itemsets

(Itemset {F} is infrequent)

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

itemset count

{A} 6

{B} 7

{C} 6

{D} 2

{E} 2

Example: pass 2
9

Scan and
count

Frequent
2-itemsets

Check
min. support

Transactions

!"#$% = 20%

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

Frequent
1-itemsets

itemset count

{A} 6

{B} 7

{C} 6

{D} 2

{E} 2

itemset

{A,B}

{A,C}

{A,D}

{A,E}

{B,C}

{B,D}

{B,E}

{C,D}

{C,E}

{D,E}

itemset count

{A,B} 4

{A,C} 4

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

itemset count

{A,B} 4

{A,C} 4

{A,D} 1

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

{C,D} 0

{C,E} 1

{D,E} 0

Example: pass 3
10

Frequent
2-itemsets

Candidate
3-itemsets

Generate
candidates

Scan and
count

Check
min. support

Frequent
3-itemsets

Transactions

!"#$% = 20%

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

itemset count

{A,B} 4

{A,C} 4

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

Example: pass 4
11

Frequent
3-itemsets

Candidate
4-itemsets

Generate
candidates

Transactions

!"#$% = 20%

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

itemset count

{A,B,C} 2

{A,B,E} 2

Example: final answer
12

Frequent
1-itemsets Frequent

2-itemsets

Frequent
3-itemsets

itemset count

{A} 6

{B} 7

{C} 6

{D} 2

{E} 2

itemset count

{A,B} 4

{A,C} 4

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

itemset count

{A,B,C} 2

{A,B,E} 2

Summary

• Only covered frequent itemset counting
• Skipped many other techniques (clustering,

classification, regression, etc.)
• Compared with statistics and machine learning:

more focus on massive datasets and I/O-efficient
algorithms

13

14

https://mrpappasteach.files.wordpress.com/2014/06/b8335-final_exam_logo.png

Relational basics

• Relational model + query languages: physical data
independence
• Relation algebra (set semantics)
• SQL (bag semantics by default)
• Schema design
• Entity-relationship design
• Theory (FD’s, MVD’s, BNCF, 4NF): help eliminate

redundancy

15

More about SQL

• NULL and three-valued logic: nifty but messy
• Bag vs. set: beware of broken equivalences
• SELECT-FROM-WHERE (SPJ)

• Grouping, aggregation, ordering
• Subqueries (including correlated ones)
• Modifications
• Constraints: the more you know the better
• Triggers (ECA): “active” data
• Index: reintroduce redundancy for performance
• Transactions and isolation levels

16

Semi-structured data

• Data models
• XML: well-formed vs. DTD (or even XML Schema)
• JSON: may be getting a schema too!

• Query languages:
• XPath: (branching) path expressions (with conditions)

• Be careful about the semantics of overloaded operators on sets
• XQuery: FLWOR, subqueries in return (restructuring output),

quantified expressions, aggregation, ordering
• MongoDB find() and aggregate()

• Programming: SAX (streaming) vs. DOM (in-memory)
• Relational vs. XML/JSON

• Tables vs. hierarchies
• Flat vs. nested

• Highly structured/typed vs. less
• Joins vs. path traversals
• Storing hierarchies as relations: various mapping methods

17

Physical data organization

• Storage hierarchy (DC vs. Pluto): so count I/Os!
• Hard drives: geometry → three components of

access cost; random vs. sequential I/O
• Solid state drives: faster, but still slower than

memory and still block-oriented access
• Data layout by row vs. by column
• Different types of locality; columns easier to compress

• Access paths (indexing)
• Primary vs. secondary; sparse vs. dense
• Tree-based indexes: ISAM, B+-tree

• Big fan-out: do as much as you can with one I/O
• Again, reintroduce redundancy to improve performance,

but keep in mind the query vs. update cost trade-off

18

Query processing & optimization

• Processing
• Scan-, sort-, hash-, and index-based algorithms

• Do as much as you can with each I/O
• Manage memory very carefully

• Pipelined execution vs. materialization
• Optimization (or “goodification”)
• Heuristics: push selections down; smaller joins first

• Reduce the size of intermediate results
• Cost-based

• Query rewrite: de-correlate and merge query blocks to expand
search space

• Cost estimation: comes down to estimating size of intermediate
results; statistics + assumptions

• Search algorithms: greedy vs. dynamic programming (with
interesting orders)

19

Parallel data processing

• Various performance metrics, sources of parallelism

• “Data Base” (e.g., Teradata) vs. “Big Data” (e.g.,
MapReduce, Spark) systems, and possible
convergence

• Key ideas from Spark
• Fewer black-box functions, more DB-style operators
• Optimize both the execution plan (DB-style) and

execution code (compiler-style)
• RDD: use memory across the entire cluster to avoid

going to Pluto altogether, but work failures must be
handled more intelligently (by tracking lineage)

20

Transaction processing

• ACID
• Concurrency control
• Serial and conflict-serializable scheduled
• Locking-based: 2PL and strict 2PL

• Recovery with logging
• Steal: requires undo logging
• No force: requires redo logging
• WAL: log holds the truth
• Fuzzy checkpointing

21

