
CompSci 516
Database Systems

Lecture 1
Introduction

and
SQL

Instructor: Sudeepa Roy

1Duke CS, Fall 2019

Course Website

• http://www.cs.duke.edu/courses/fall19/compsci516/

• Please check frequently for updates!

Duke CS, Fall 2019 2

http://www.cs.duke.edu/courses/spring16/compsci516/

Instructor
• Sudeepa Roy

– sudeepa@cs.duke.edu
– https://users.cs.duke.edu/~sudeepa/
– office hour: Tuesdays 2:45 pm – 3:45 pm, LSRC D325,

and by appointments
– No office hour today, instead on Friday 8/30 2-3 pm

• About myself
– Assistant Professor in CS
– PhD: UPenn, Postdoc: Univ. of Washington
– Joined Duke CS in Fall 2015
– Research interests:

• Data Analysis, causality, query optimization, data science,
database theory, applications of data, uncertain data,…

3Duke CS, Fall 2019

mailto:sudeepa@cs.duke.edu
https://users.cs.duke.edu/~sudeepa/

Three (half*-)TAs

• Yuchao Tao
– yuchao.tao@duke.edu

• Yanlin Yu
– yanlin.yu@duke.edu

• Tianrui Zhang
– tanrui.zhang@duke.edu

• All CompSci 516 veterans!
– office hours: TBD

4Duke CS, Fall 2019

* Offering you full help!

mailto:yuchao.tao@duke.edu
mailto:yanlin.yu@duke.edu
mailto:tanrui.zhang@duke.edu

Logistics

• Discussion forum: Piazza
– All enrolled students (by yesterday) are already there
– Send me an email if you have not received a welcome

email from Piazza
• To reach course staff:

– compsci516-staff@cs.duke.edu
– Please use piazza as much as possible

• Lecture slides will be uploaded before the class as
incomplete notes
– but will be updated after the class

Duke CS, Fall 2019 5

mailto:compsci516-staff@cs.duke.edu

Grading

• Three Homework: 30%
• Project: 10%
• Midterm: 20%
• Final: 30%
• Class participation: 10%

– In-class quizzes: 5%
– In-class labs: 5%

6Duke CS, Fall 2019

Grading Strategy
• Relative grading

– The actual grade distribution at the end will depend on the
performance of the entire class on all the components.

– Topper of the class gets A+ irrespective of the number, and
all and only “above expectation” performances get A+.

– No fixed lowest grade or grade distribution.
– Everyone can get good grade by working hard!

7Duke CS, Fall 2019

Homework
• Due in about 2 weeks after they are posted/previous hw is due

– ALWAYS start early!
– Part of the homework may be due in 1 week

• Two *late days* with penalty
– For the take-home part (not the in-class lab part) of each homework
– 25% penalty on the entire assignment if you submit within the next 24 hours after the deadline
– 50% penalty on the entire assignment if you submit within the next 24 hours after the deadline
– No credit after 48 hours
– No credit after solutions are posted (even if within the first 48 hours)
– Start early and do not count on late days!

• contact the instructor if you have a *valid* reason to be late
– Another exam, project, hw is NOT a valid reason – we will always be fair to all

• To be done strictly individually

• PLEASE READ WHAT IS ALLOWED/NOT ALLOWED (will be repeated in class next
week)

• https://www2.cs.duke.edu/courses/fall19/compsci516/Lectures/CompSci
516-HonorCode.pdf

Duke CS, Fall 2019 8

https://www2.cs.duke.edu/courses/fall19/compsci516/Lectures/CompSci516-HonorCode.pdf

Homework Overview
• You will learn how to use traditional and new database

systems in the homework
– Have to learn them mostly on your own following tutorials available

online and with some help from the TA

• HW1: Traditional DBMS
– SQL and Postgres (and some XML too!)

• HW2: Distributed data processing
– Spark and AWS

• HW3: NOSQL
– MongoDB

Duke CS, Fall 2019 9

Exams

• Midterm – Oct 15 (Tues)
• Final – Dec 14 (Sat)

• In class
• Closed book, closed notes, no electronic devices
• Total weight: 20 + 30 % = 50 %
• Exams will test your understanding of the

material
• Both exams are comprehensive

– would include every lecture up to the exams

Duke CS, Fall 2019 10

Projects
• 10% weight
• In groups of 3-4

– Groups of smaller and larger sizes need instructor’s permission
– Each group member should do approx. equal work

• Very flexible in terms of topic!
• Show your creativity and researcher-side!
• Work done should be at least equivalent to

– one hw * no. of group members

• All group members will get the same grade
• More information and ideas for projects will be posted later

Duke CS, Fall 2019 11

Project Deliverables
1. Project proposal

– problem selection is part of the project

2. Midterm progress report
3. Final project report
4. A final 5-10 mins project presentation and/or demonstration

• Due dates will be posted (about 1 month time for all three
reports)

12Duke CS, Fall 2019

Class Participation

• 5% for quizzes, 5% for in-class labs
• Please bring laptops every day!
• Pop-up quiz

– Participation (50%) + correct answering (50%)
– lowest score will be dropped

• In-class labs
– Attending the lab and submitting some solutions (50%)
– Submitting correct solutions : within 24 hours after class ends

(50%)
– “Extra credit” 10% for submitting *all* correct solutions in class!

Duke CS, Fall 2019 13

Please ask questions in class!

• In general, actively participate in the class!
– Ask questions in class and on piazza
– Stop me as many times as you need to understand the lectures
– Answer each other’s questions on piazza

• Also send (anonymous or not) feedback, suggestions, or
concerns on Piazza or by email

Duke CS, Fall 2019 14

Reading Material

• Will mostly follow the ”cowbook” by Ramakrishnan-Gehrke
– The chapter numbers will be posted

• You do not have to buy the books, but it will be good to consult
them from time to time

• You should be prepared to do quite a bit of reading from
various books and papers

15Duke CS, Fall 2019

A Quick Survey
• Have you taken an undergrad database course earlier

– CS 316/equivalent?

• Are you familiar with
– SQL?
– RA? (σ, Π, ´, ⨝, r, È, Ç, -)
– Keys, foreign keys?
– Index in databases?
– Logic: ∧,∨,∀,∃,¬,∈, =>

– Transactions?
– Map-reduce/Spark?
– NOSQL?

• Have you ever worked with a dataset?
– relational database, text, csv, XML

• Have you ever used a database system?
– PostGres, MySQL, SQL Server, SQL Azure

16Duke CS, Fall 2019

What is this course about?
• This is a graduate-level database course in CS

– We will cover principles, internals, and applications of database
systems in depth

• Database concepts
– Data Models, SQL, Views, Constraints, RA, Normalization

• Principles and internals of database management systems (DBMS)
– Indexing, Query Execution-Algorithms-Optimization, Transactions,

Parallel and Distributed Query Processing, Map Reduce

• Advanced and research topics in databases
– e.g. Datalog, NOSQL, Data mining, …

17Duke CS, Fall 2019

What this course is NOT about

• Spark, AWS, cluster computing…
– Partially covered in a HW and a lecture

• Machine learning based analytics
• Statistical methods for data analytics
• Python, R, …

Duke CS, Fall 2019 18

Why should we care about databases?

• We are in a data-driven world

• Data = Currency, Data = Power, Data = Fun

• “Big Data” is supposed to change the mode of operation for almost every
single field
– Science, Technology, Healthcare, Business, Manufacturing, Journalism,

Government, Education, …

• We must know how to collect, store, process, and analyze such data

• Storing data in flat files and writing python or C code would fail at some
point!

• And hundreds of jobs on data science, data analysis, data engineer, …!

19Duke CS, Fall 2019

This week’s plan
• Today

– Relational Data Model and SQL
• Lecture-2:

– First In-class lab on SQL (conducted by Yanlin and Tianrui)
– You will install postgres, work on MovieLens data on movie reviews,

and then write some queries
– Will be graded

• You will submit solutions on Gradescope (auto-graded instantaneously!)
– Do not forget your laptop!

• Any platform should be fine
– Feel free to attend even if you are on the waitlist and would like to

enroll in this class

• Next week:
– Data model and data independence, more SQL

20Duke CS, Fall 2019

Relational Data Model

• Proposed by Edward (Ted) Codd in 1970
– won Turing award for it!

• Motivation:
– Simplicity
– Easy query optimizations
– Separation of abstraction and operations

• More next week

Duke CS, Fall 2019 21

Relational Data Model

• The data description construct is a Relation
– Represented as a “table”
– Basically a “set” of records (set semantic)
– order does not matter
– and all records are distinct

• however, it is true for the relational model, not for standard DBM
– allow duplicate rows (bag semantic)
– unless restricted by key constraints. Why?

22Duke CS, Fall 2019

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith1@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Students

Bag: {1, 1, 2, 2, 3, 2, 1, 5, 6, 1}
Set: {1, 2, 3, 5, 6}

Bag vs. Set

• Why “bag semantic” and not “set semantic” in standard
DBMSs?
– Primarily performance reasons
– Duplicate elimination is expensive (requires sorting)
– Some operations like “projection”s are much more efficient on bags

than sets

23Duke CS, Fall 2019

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith1@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Students

Relational Data Model

24Duke CS, Fall 2019

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith1@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Students Attribute/
Column/

Field

Tuple/
Row/

Record

Value

What is a poorly chosen attribute in this relation?

• Relational database = a set of relations
• A Relation : made up of two parts

1. Schema
2. Instance

Schema and Instance
• One schema can have multiple instances

• Schema:
– A template for describing an entity/relationship (e.g. students)
– specifies name of relation + name and type of each column
e.g. Students(sid: string, name: string, login: string, age: integer, gpa: real).

• Instance:
– When we fill in actual data values in a schema
– a table, has rows and columns
– each row/tuple follows the schema and domain constraints
– #Rows = cardinality, #fields = degree or arity
– example below

Duke CS, Fall 2019 25

Cardinality = 3, degree = 5
sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith1@math 19 3.8

SQL
(Structured Query Language)

Duke CS, Fall 2019 26

Relational Query Languages

• A major strength of the relational model: supports
simple, powerful querying of data.

• Queries can be written intuitively, and the DBMS is
responsible for an efficient evaluation
– The key: precise semantics for relational queries
– Based on a sound theory!
– Allows the optimizer to extensively re-order operations,

and still ensure that the answer does not change.

Duke CS, Fall 2019 27

The SQL Query Language

• Developed by IBM (systemR) in the 1970s based on
Ted Codd’s relational model
– First called “SEQUEL” (Structured English Query Language)

• First commercialized by Oracle (then Relational
Software)in 1979

• Standards by ANSI and ISO since it is used by many
vendors
– SQL-86, -89 (minor revision), -92 (major revision), -96, -99

(major extensions), -03, -06, -08, -11, -16

Duke CS, Fall 2019 28

Purposes of SQL

• Data Manipulation Language (DML)
– Querying: SELECT-FROM-WHERE
– Modifying: INSERT/DELETE/UPDATE (next week)

• Data Definition Language (DDL)
– CREATE/ALTER/DROP (next week)

29Duke CS, Fall 2019

The SQL Query Language

• To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

Duke CS, Fall 2019 30

all attributes

Querying Multiple Relations
• What does the following

query compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get: ??

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Querying Multiple Relations
• What does the following

query compute?
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid
Smith Topology112

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances of
Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

Enrolled

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Basic SQL Query

• relation-list A list of relation names
– possibly with a “range variable” after each name

• target-list A list of attributes of relations in relation-list
• qualification Comparisons

– (Attr op const) or (Attr1 op Attr2)
– where op is one of = , <, >, <=, >= combined using AND, OR and NOT

• DISTINCT is an optional keyword indicating that the answer should not
contain duplicates
– Default is that duplicates are not eliminated!

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke CS, Fall 2019 33

Read yourself, after reading the next few slides first

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following
conceptual evaluation strategy:
– Compute the cross-product of <relation-list>
– Discard resulting tuples if they fail <qualifications>
– Delete attributes that are not in <target-list>
– If DISTINCT is specified, eliminate duplicate rows

• This strategy is probably the least efficient way to compute a
query!
– An optimizer will find more efficient strategies to compute the

same answers

SELECT [DISTINCT] <target-list>
FROM <relation-list>
WHERE <qualification>

Duke CS, Fall 2019 34

Read yourself, after reading the next few slides first

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

What does this query return?

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Step 1: Form “cross product” of Sailor and Reserves

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Step 2: Discard tuples that do not satisfy <qualification>

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Step 3: Select the specified attribute(s)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Recap
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

1

2

3

Always start from “FROM” -- form cross product
Apply “WHERE” -- filter out some tuples (rows)
Apply “SELECT” -- filter out some attributes (columns)

Ques. Does this get evaluated this way in practice in a Database Management System (DBMS)?

No! This is conceptual evaluation for finding what is correct!
We will learn about join and other operator algorithms later

A Note on “Range Variables”

• Sometimes used as a short-name
• The previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!

OR

Duke CS, Fall 2019 40

A Note on “Range Variables”

• Really needed only if the same relation appears twice
in the FROM clause (called self-joins)

• Find pairs of Sailors of same age

SELECT S1.sname, S2. name
FROM Sailors S1, Sailors S2
WHERE S1.age = S2.age AND S1.sid < S2.sid

Duke CS, Fall 2019 41

Why do we need the 2nd condition?

Find sailor ids who’ve reserved
at least one boat

SELECT ????
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Fall 2019 42

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

• Would adding DISTINCT to this
query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Fall 2019 43

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Find sailor ids who’ve reserved
at least one boat

Find sailors who’ve reserved at least one boat

• Would adding DISTINCT to this query make a
difference?
– Note that if there are multiple bids for the

same sid, you get multiple output tuples for
the same sid

– Without distinct, you get them multiple
times

• What is the effect of replacing S.sid by
S.sname in the SELECT clause?
– Would adding DISTINCT to this variant of the

query make a difference even if one sid
reserves at most one bid?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Duke CS, Fall 2019 44

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Simple Aggregate Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Next: different types of joins

• Theta-join
• Equi-join
• Natural join
• Outer Join

Duke CS, Fall 2019 46

Condition/Theta Join

Duke CS, Fall 2019 47

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age >= 40

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

Form cross product, discard rows that do not satisfy the condition

Equi Join

Duke CS, Fall 2019 48

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid=R.sid and age = 45

sid sname rating age sid bid day
22 dustin 7 45 22 101 10/10/96
22 dustin 7 45 58 103 11/12/96
31 lubber 8 55 22 101 10/10/96
31 lubber 8 55 58 103 11/12/96
58 rusty 10 35 22 101 10/10/96
58 rusty 10 35 58 103 11/12/96

A special case of theta join
Join condition only has equality predicate =

Natural Join

Duke CS, Fall 2019 49

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT *
FROM Sailors S NATURAL JOIN Reserves R

sid sname rating age bid day
22 dustin 7 45 101 10/10/96
22 dustin 7 45 103 11/12/96
31 lubber 8 55 101 10/10/96
31 lubber 8 55 103 11/12/96
58 rusty 10 35 101 10/10/96
58 rusty 10 35 103 11/12/96

A special case of equi join
Equality condition on ALL common predicates (sid)
Duplicate columns are eliminated

Outer Join

Duke CS, Fall 2019 50

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

SELECT S.sid, R. bid
FROM Sailors S LEFT OUTER JOIN Reserves R
ON S.sid=R.sid

Preserves all tuples from the left table whether or not there is a match
if no match, fill attributes from right with null
Similarly RIGHT/FULL outer join

sid bid
22 101
31 null
58 103

End of Lecture-1

Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching
• Find triples (of ages of sailors and two fields defined by expressions)

for sailors
– whose names begin and end with B and contain at least three characters

• LIKE is used for string matching. `_’ stands for any one character
and `%’ stands for 0 or more arbitrary characters
– You will need these often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke CS, Fall 2019 51

Find sid’s of sailors who’ve reserved a red or a
green boat

• UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples
– can themselves be the result of

SQL queries

• If we replace OR by AND in the
first version, what do we get?

• Also available: EXCEPT (What
do we get if we replace UNION
by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find sid’s of sailors who’ve reserved
a red and a green boat

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find sid’s of sailors who’ve reserved
a red and a green boat

• INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.
– Included in the SQL/92

standard, but some systems
don’t support it

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Nested Queries

• A very powerful feature of SQL:
– a WHERE/FROM/HAVING clause can itself contain an SQL query

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries, think of a

nested loops evaluation
– For each Sailors tuple, check the qualification by computing the

subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke CS, Fall 2019 55

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN
• Illustrates why, in general, subquery must be re-

computed for each Sailors tuple

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Fall 2019 56

Find names of sailors who’ve reserved boat #103:

Nested Queries with Correlation

• If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103
– UNIQUE checks for duplicate tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Fall 2019 57

Find names of sailors who’ve reserved boat #103
at most once:

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE.
• Also available: op ANY, op ALL, op IN

– where op : >, <, =, <=, >=

• Find sailors whose rating is greater than that of some
sailor called Horatio
– similarly ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke CS, Fall 2019 58

Summary

• Relational Data
• SQL

– Semantic
– Join
– Simple Aggregates
– Nested Queries

• You will learn these further and run yourself on
PostGres on Thursday in the in-class lab on SQL!

Duke CS, Fall 2019 CompSci 516: Database Systems 59

