Duke CS, Fall 2019

CompSci 516
Database Systems

Lecture 10
Tree and Hash
Index

Instructor: Sudeepa Roy

CompSci 516: Database Systems

Announcements (09/26)

e HW1 Deadlines!

— Today: Q4 (last late day with penalty)
— Q5: next to next Tuesday 10/01

* Project details and ideas posted

— Informal proposal due in a week 10/3 (which problem
you want to work on and the group members)

— Add your name or add your group to the online
spreadsheet

— 3-4 students in each group (some ongoing projects need
fewer students)

— Work on the projects more when a HW is not due!

Methods for indexing
* Recap index on blackboard

* Tree-based
* Hash-based

Duke CS, Fall 2019 CompSci 516: Database Systems

Tree-based Index
and B*-Tree

Duke CS, Fall 2019 CompSci 516: Database Systems

Range Searches

* Find all students with gpa > 3.0”

— If data is in sorted file, do “binary search” to find
first such student, then scan to find others.

— Cost of binary search can be quite high.

Duke CS, Fall 2019 CompSci 516: Database Systems

Index file format

index entry

P

0

Ky lP,

2| P

2

;

 Simple idea: Create an “index file”

;

;

— <first-key-on-page, pointer-to-page>, sorted on keys

/

k1 k2
d \

kN

\

N

\

Page 1

Page 2

Page 3

Page N

Can do binary search on (smaller) index file
but may still be expensive: apply this idea repeatedly

Duke CS, Fall 2019

CompSci 516: Database Systems

Index File

Data File

Indexed Sequential Access Method
(ISAM)

Leaf-pages contain data entry — also some overflow pages
DBMS organizes layout of the index — a static structure

If a number of inserts to the same leaf, a long overflow chain can
be created

— affects the performance

Non-leaf
Pages

v v v
Leaf ...] [J---C] [J--CJ |

Pages :) :> - 3 i:;

Overflow -------
page

Primary pages
Leaf pages contain data entries.

Duke CS, Fall 2019 CompSci 516: Database Systems 7

B+ Tree

* Most Widely Used Index: a dynamic structure
* Insert/delete at log N cost = height of the tree (cost =1/0)
— F =fanout, N = no. of leaf pages
— tree is maintained height-balanced
* Minimum 50% occupancy
— Each node contains d <= m <= 2d entries
— Root contains 1 <= m <= 2d entries

— The parameter d is called the order of the tree

e Supports equality and range-searches efficiently

Index Entries

The index-file (Direct search)

Data Entries
("Sequence set")

Duke CS, Fall 2019 CompSci 516: Database Systems

B+ Tree Indexes

Non-leaf l
Pages \17 c<< \17

— /¢\ /{,\ /¢\ /¢\
Leaf N -—> coo -—> coo -—> coo
Pages

(Sorted by search key)

- Leaf pages contain data entries, and are chained (prev & next)
- Non-leaf pages have index entries; only used to direct searches:

index entry
[I

Duke CS, Fall 2019 ‘17 ‘L CoﬁLpSci 516: Database Systems J7

Example B+ Tree

* Find
Search begins at root, and key — 28%?

L3 . . _ *?
comparisons direct it to a leaf 297
— All > 15* and < 30*

Roo& Note how data entries
‘e in leaf level are sorted
117 |,
N
Entries< 17 Entries >= 17
5 (]| 13 27 || 30

2* 3* ?5* 7* 8* ﬂ* 16* ﬁ\zzi 24* ﬁ\27* 29* T;* 34* 38* 39*

Duke CS, Fall 2019 CompSci 516: Database Systems 10

B+ Trees in Practice

e Typical order: d = 100. Typical fill-factor: 67%
— average fanout F =133

* Typical capacities:
— Height 4: 1334 =312,900,700 records
— Height 3: 1333 = 2,352,637 records

e Can often hold top levels in buffer pool:
— Level 1 = 1 page = 8 Kbytes
— Level 2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

See this slide later,
e Find correct leaf L First, see examples on the next

few slid
Put data entry onto L SR
— If L has enough space, done

— Else, must split L
- into Land a new node L2
* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

— To split index node, redistribute entries evenly, but push
up middle key

- Contrast with leaf splits
Splits “grow” tree; root split increases height.
— Tree growth: gets wider or one level taller at top.

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Inserting 8* into Example B+ Tree

N STEP-1

13 17 24 30

2% [3* [5* | 7* 14*| 16* 19% 20*| 22* 24* | 27%| 29* 33*| 34*| 38* [39*

* Copy-up: 5 appears
in leaf and the level

above -

* Observe how -
minimum —
occupancy is 2+ | 3 54| 7+ | 8
guaranteed

Duke CS, Fall 2019 CompSci 516: Database Systems

Inserting 8* into Example B+ Tree

Need to split parent Root \

2*

3*

5/

13

17

24

30

STEP-2

14*

16*

19*

20"

22*

24*

27*

29*

33*

34*

38*

39*

Note difference between
copy-up and push-up
What is the reason for this
difference?

All data entries must
appear as leaves

— (for easy range search)
no such requirement for
indexes

— (so avoid redundancy)

17

13

24

30

Example B+ Tree After Inserting 8*

/'

ROON

17

p.

kK

\

24

30

p,

T

2*

3*

5*

13
7*

8*

x&
14*(16*

197

20%

22*

24*

27*

29*

33*

34*

38*

39*

Notice that root was split, leading to increase in height.

* In this example, we can avoid split by re-distributing entries (insert 8 to
the 2nd Jeaf node from left and copy it up instead of 13)

* however, this is usually not done in practice - since need to access 1-2
extra pages always (for two siblings), and average occupancy may
remain unaffected as the file grows

Duke CS, Fall 2019

CompSci 516: Database Systems

15

Deleting a Data Entry from a B+ Tree

Each non-root node contains d <= m <= 2d entries ‘

Start at root, find leaf L where entry belongs

Remove the entry See this slide later,

— If Lis at least half-full, done! First, see examples on the next
few slides

— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent node with same
parent as L)

 If re-distribution fails, merge L and sibling

If merge occurred, must delete entry (pointing to L or
sibling) from parent of L

Merge could propagate to root, decreasing height

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Example Tree: Delete 19*

ROON

17

/'

Before deleting 19*

24

30

T

2*

3* 5 8*

13
4 \ ~
T 14*|16*

197 20% 22*

24*

27*

29* 33*| 34*

38*

39*

e We had inserted 8*
e Now delete 19*
* Easy

Duke CS, Fall 2019

CompSci 516: Database System

S

17

Example Tree: Delete 19*

ROON

17

/'

\

After deleting 19*

5 13 24 30
4 \ N ~
2% 3* 5| 7% | 8* 14*| 16* 20%|22* 24*(27%|29* 33* 34*[38* 39*
Duke CS, Fall 2019 CompSci 516: Database Systems 18

Example Tree: Delete 20*

ROON

17

/'

\

Before deleting 20*

5 13 24 30
4 \ N ~
2% 3* 5| 7% | 8* 14*| 16* 20%|22* 24*(27%|29* 33* 34*[38* 39*
Duke CS, Fall 2019 CompSci 516: Database Systems 19

Example Tree: Delete 20*

/'

ROON

17

\ \

After deleting 20*
-step 1

13 24 30
2 \ b N
| 3* 5% 7* | 8* 14*(16* 22* 24*| 27*(29* 33*| 34*| 38*(39*

e < 2 entries in leaf-node
e Redistribute

Duke CS, Fall 2019

CompSci 516: Database Systems

20

Example Tree: Delete 20*

After deleting 20*

ROON - step 2

17
5 13 27 30
7 \ < 7 N
3* ﬁ\;* 7* | 8* 14*| 16* 221 24* 27*| 29* 33* 34*(38* 39*

* Notice how middle key is copied up

Duke CS, Fall 2019 CompSci 516: Database Systems 21

Example Tree: ... And Then Delete 24*

Before deleting 24*

5 13 27 30
N h N
3* ﬁ\;* 7| 8* 14*| 16* 227 247 27%| 29* 33*| 34* 38* 39*

Duke CS, Fall 2019

CompSci 516: Database Systems

22

Example Tree: ... And Then Delete 24*

After deleting 24*

ROON -Step 1

17
5 13 27 30
7 \ < 7 N
1 3 ﬁ\;* 7* | 8* 14*| 16* 221 27*| 29* 33* 34*(38* 39*

* Once again, imbalance at leaf

e Can we borrow from sibling(s)?
e No-d-1andd entries (d = 2)

* Need to merge

Duke CS, Fall 2019 CompSci 516: Database Systems 23

Example Tree: ... And Then Delete 24*

/'

ROON

17

e

¥ A

After deleting 24*
- Step 2

Observe "toss’ of old index entry 27

\ \

30

y

2*

3*

ﬁ\;*

5 13
7*

8*

k
14*(16*

227

277

29%

33*

34*

38*

39*

Duke CS, Fall 2019

Imbalance at parent
Merge again

CompSci 516: Database Systems

because, three index 5, 13, 30

but five pointers to leaves
But need to “pull down” root index entry

24

Final Example Tree

Ro&A

3* 5| 7% | 8* 14* | 16* 22%| 27*| 29* 33*| 34* | 38* | 39*

Duke CS, Fall 2019 CompSci 516: Database Systems

Example of Non-leaf Re-distribution

An intermediate tree is shown

In contrast to previous example, can re-distribute entry from left child of

root to right child

/’

ROCN‘

22

13 || 17 || 20 30
- b d ~ A -
/ N | K\A\&Xs ¥ f‘\\&
2% 3* S5*| 7*| 8* 14* 16* 179 18 20% 21% 224 2771 29* 33% 344 38%* 397

Duke CS, Fall 2019

CompSci 516: Database Systems

26

17 as well for illustration.

After Re-distribution

Intuitively, entries are re-distributed by pushing through’ the
splitting entry in the parent node.
— |t suffices to re-distribute index entry with key 20; we’ve re-distributed

17
5 (| 13 20| 22 (| 30
2% 3* 5*| 7*| 8* 14*(16* 17418 20* 21% 22% 271 29* 33*34%38*39*

Duke CS, Fall 2019

CompSci 516: Database Systems

27

Duplicates

Secondary indexes

* First Option:
— The basic search algorithm assumes that all entries with the same key
value resides on the same leaf page

— If they do not fit, use overflow pages (like ISAM)

* Second Option:
— Several leaf pages can contain entries with a given key value

— Search for the left most entry with a key value, and follow the leaf-
sequence pointers

— Need modification in the search algorithm

e Alt-2 and 3: if k* =<k, rid>, several entries are to be searched
— Orinclude rid in k —becomes unique index, no duplicate

— If k* = <k, rid-list>, same solution, but if the list is long, again a single
entry can span multiple pages

Duke CS, Fall 2019 CompSci 516: Database Systems 28

A Note on Order’

* Order (d)

— denotes minimum occupancy

* Replaced by physical space criterion in practice (at

least half-full’)

— Index pages can typically hold many more entries than leaf
pages

— Variable sized records and search keys (and even fixed-size
for Alt-3) mean different nodes will contain different

numbers of entries.

Summary

* Tree-structured indexes are ideal for range-searches,
also good for equality searches

e |ISAM is a static structure

— Only leaf pages modified; overflow pages needed
— Overflow chains can degrade performance with updates

* B+ treeis a dynamic structure
— Inserts/deletes leave tree height-balanced; log N cost
— High fanout (F) means depth rarely more than 3 or 4
— Almost always better than maintaining a sorted file
— Most widely used index in DBMS because of its versatility
— One of the most optimized components of a DBMS

Duke CS, Fall 2019 CompSci 516: Database Systems

30

Duke CS, Fall 2019

Hash-based Index

CompSci 516: Database Systems

31

Hash-Based Indexes

* Records are grouped into buckets

— Bucket = primary page plus zero or more overflow pages

e Hashing function h:
— h(r) = bucket in which (data entry for) record r belongs
— h looks at the search key fields of r
— No need for “index entries” in this scheme

Duke CS, Fall 2019 CompSci 516: Database Systems 32

Example: Hash-based index

h1(r) =r mod 3 h2(r) =r mod 2

Smith, 44, 3000 === h2(AGE) = 00
Jones, 40, 6003

h1{AGE) = 00 / [

h1(AG
AGE

Ashby, 25, 3000
Basu, 33, 4003 % h2(SAL) = 01

Bristow, 29, 2007 1

h1(AGE)=1Q | . = - -
Daniels, 22, 6003

File of <SAL, rid> pairs hashed on SAL

. Alternative 2
Employee File hashed on AGE

Alternative 1 . . . o
Index organized file hashed on AGE, with Auxiliary index on SAL

Duke CS, Fall 2019 CompSci 516: Database Systems 33

Introduction

* Hash-based indexes are best for equality
selections

— Find all records with name = “Joe”
— Cannot support range searches

— But useful in implementing relational operators like
join (later)

e Static and dynamic hashing techniques exist

— trade-offs similar to ISAM vs. B+ trees

Duke CS, Fall 2019 CompSci 516: Database Systems 34

Static Hashing

e Pages containing data = a collection of buckets

— each bucket has one primary page, also possibly
overflow pages

— buckets contain data entries k*

h(key) mod N

key : _ s e e e

N-1 | 5, ...

Primary bucket pages Overflow pages
Duke CS, Fall 2019 CompSci 516: Database Systems 35

Static Hashing

* # primary pages fixed

— allocated sequentially, never de-allocated, overflow pages if
needed.

* h(k) mod N = bucket to which data entry with key k
belongs

— N = # of buckets (why do we need mod N?)

O _é o © o

h(key) mod N

key : I N

N-1 | 5, ...

Primary bucket pages Overflow pages
Duke CS, Fall 2019 CompSci 516: Database Systems

36

Static Hashing

Hash function works on search key field of record r
— Must distribute values over range 0 ... N-1
— h(key) = (a * key + b) usually works well ----- then, bucket = h(key) mod N
— aand b are constants —chosen to tune h
Advantage:
— #buckets known — pages can be allocated sequentially
— search needs 1 1/0 (if no overflow page)
— insert/delete needs 2 I/0O (if no overflow page) (why 27?)
Disadvantage:
— Long overflow chains can develop if file grows (data skew)
— Can degrade performance or waste of space if file shrinks
Solutions:
— keep some pages say 80% full initially
— Periodically rehash if overflow pages (can be expensive)

— or use Dynamic Hashing!
Duke CS, Fall 2019 CompSci 516: Database Systems

37

Dynamic Hashing Techniques

* Extendible Hashing
* Linear Hashing

Duke CS, Fall 2019 CompSci 516: Database Systems

38

Extendible Hashing

Consider static hashing
Bucket (primary page) becomes full

Why not re-organize file by doubling # of buckets?
— Reading and writing (double #pages) all pages is expensive

ldea: Use directory of pointers to buckets

— double # of buckets by doubling the directory, splitting just the
bucket that overflowed

— Directory much smaller than file, so doubling it is much cheaper
— Only one page of data entries is split

— No overflow page (new bucket, no new overflow page)

— Trick lies in how hash function is adjusted

Duke CS, Fall 2019 CompSci 516: Database Systems 39

* Directory is array of size 4
— each element points to a bucket

— Hbits to represent directory = log
of max no. of buckets =log 4 =2
= global depth

LOCAL DEPTH — |
Example SN

00

/

1* 5% 21*

01]

10

~
11 \

/

* To find bucket for search key r DIRECTORY 2
— take last global depth # bits of AL
h(r) DATA PAGES
— assume h(r)=r
— If h(r) =5 =binary 101
— itisin bucket pointed to by 01
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Bucket A

Bucket B

Bucket C

Bucket D

13

Example

Insert:

« If bucket has space, insert
« If bucket is full, split it

* allocate new page

* re-distribute

Suppose inserting 13*
e binary=1101

* bucket 01

* Has space, insert

Duke CS, Spring 2016

LOCAL DEPTH - [:n:

GLOB\A;\D‘EPTH 4* 12* 32* 16”
2 2

00 A s

01 -

o 4 [

11 N 10*

DIRECTORY\‘ 2
15* 7 19*
DATA PAGES

CompSci 516: Data Intensive Computing Systems

Bucket A

Bucket B

Bucket C

Bucket D

14

Example

Insert:

If bucket has space, insert
If bucket is full, split it
allocate new page
re-distribute

Suppose inserting 20*

binary = 10100
bucket 00
Already full

LOCAL DEPTH | 3.

;LOBAL DEPTH 4* 12* 32* 16
00 P L
01 -
10 ~ 2 28

11 N

Dl RECTO RY B

15*

7* 19*

DATA PAGES

To split, consider last three bits of 10100

Last two bits the same 00 — the data entry
will belong to one of these buckets

Third bit to distinguish them

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

Bucket A

Bucket B

Bucket C

Bucket D

15

Example

When 20 is inserted here

LOCAL DEPTH-Z—"| 2
GLOBAL DEPTH 3216
2 2
00 I /1* 5* 21*13°
o0 | —/|
1| 10
2
DIRECTORY _ [i:ii
15*7* 19*
2
4* 12* 20*

Duke CS, Fall 2019

2
4* 12+ 30+ 16*| DucketA
BB
Bucket A LOCAL DEPTH- Z—7}:%:
GLOBAL DEPTH 32*16
3 /2
Bucket B 000 / 1* 5* 21*13’
//
001
£
Bucket C 010 ~ o
011 \ 10*
100 _
Bucket D 101 55
110 | 7 15* 7% 19*
111 /><
e 55
Bucket A2 R

of Bucket A)

CompSci 516: Database Systems

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
new "split image
of Bucket A)

43

Global depth: Max # of bits needed to tell which bucket an entry belongs to

Exa l I l p I e Local depth: # of bits used to determine if an entry belongs to this bucket

e also denotes whether a directory doubling is needed while splitting
* nodirectory doubling needed when 9* = 1001 is inserted (LD< GD)

LOCAL DEPTH—Z—|2:

GLOBAL DEPTH 32*16]
2 2
00 I /1* 5* 2113’
01 /
0| | [z
11 . ~[10"
o
DIRECTORY_ |-
15*7* 19*
BB
4 12*20*

Duke CS, Fall 2019

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(‘split image'
of Bucket A)

LOCAL DEPTH—Z— 73
GLOBAL DEPTH 32°167
00| 7 1% 5% 2113
//
001
010 \742
011 N 10°
100 |
101 2
0 7 15* 7* 19*
111 | —
><3
DIRECTORY \4: 727207

CompSci 516: Database Systems

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
new "split image
of Bucket A)

44

When does bucket split cause
directory doubling?

- Before insert, local depth of bucket = global depth

- Insert causes local depth to become > global
depth

- directory is doubled by copying it over and fixing
pointer to split image page

4

Duke CS, Fall 2019 CompSci 516: Database Systems 45

Comments on Extendible Hashing

* If directory fits in memory, equality search answered with one

disk access (to access the bucket); else two.

— 100MB file, 100 bytes/rec, 4KB page size, contains 10° records (as data
entries) and 25,000 directory elements; chances are high that directory

will fit in memory
— if the distribution of hash values is skewed, directory can grow large

 Delete: (goin reverse direction)
— If removal of data entry makes bucket empty, can be merged with “split
image’
— |If each directory element points to same bucket as its split image, can
halve directory.

Linear Hashing

* This is another dynamic hashing scheme
— an alternative to Extendible Hashing
* LH handles the problem of long overflow chains

— without using a directory
— handles duplicates and collisions
— very flexible w.r.t. timing of bucket splits

Linear Hashing: Basic Idea

Use a family of hash functions hy, hy, h,, ...
— hi(key) = h(key) mod(2'N)

— N = initial # buckets

— his some hash function (range is not 0 to N-1)

— If N = 2%, for some d,, h, consists of applying h and looking at the
last d; bits, where d, =d, + i
- Note: hi(key) = h(key) mod(2%+)
— h,,; doubles the range of h;
- if h, maps to M buckets, h;,; maps to 2M buckets
- similar to directory doubling
— Suppose N=32,d,=5
« hy=hmod 32 (last 5 bits)
« h;=h mod 64 (last 6 bits)
- h,=h mod 128 (last 7 bits) etc.

Duke CS, Fall 2019 CompSci 516: Database Systems 48

See example first

Linear Hashing: Rounds

* Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin

* During round Level, only h ., and h ., arein
use

 The buckets from start to last are split sequentially
— this doubles the no. of buckets

* Therefore, at any point in a round, we have

— buckets that have been split
— buckets that are yet to be split
— buckets created by splits in this round

Duke CS, Fall 2019 CompSci 516: Database Systems 49

Overview of LH File

* |In the middle of a round Level — originally O to N

0 ——ax—

Next - 1
Bucket to be split Next

Buckets that existed at the
beginning of this round: -y
this is the range of

h Level

F

—

Buckets split in this round:

if hiever (F) is in this range, must use
hievel + 1 (1) to decide if entry is in

“split image' bucket.

/ if hiever (1)

N Level

<

is in this range, no need

“split image' buckets:
created (through splitting
of other buckets) in this round

Buckets O to Next-1 have been

split
Next to Ni..e Yet to be split

Round ends when all Nyinitial
(for round R) buckets are split

Duke CS, Fall 2019 CompSci 516: Database Systems 50

Overview of LH File

* |In the middle of a round Level — originally O to N

0 = :I" Buckets split in this round:

Next - 1 2 if hiever (F) is in this range, must use
Bucket to be split Next hievel + 1 (r) to decide if entry is in

“split image' bucket.

Buckets that existed at the

beginning of this round: oy - /if i ever (1)
this is the range of o is in this range, no need
h
Level

“split image' buckets:
created (through splitting
: of other buckets) in this round

NLevel
Buckets O to Next-1 have been
split
Next to Ni..e Yet to be split

Round ends when all Nyinitial
(for round R) buckets are split * Else, r could belong to bucket hyeye((r) or hieyel(r)+Ng

* Apply hieye+1(r) to find out

Search: To find bucket for data entry r, find h . (r):
e If hepel(r) in range "'Next to N\, r belongs here.

Duke CS, Fall 2019 CompSci 516: Database Systems 51

Linear Hashing: Insert

* Insert: Find bucket by applying h ..o / Nieverss:
— If bucket to insert has space

e Insert

— If bucket to insert into is full:

1. Add overflow page and insert data entry
2. Split Next bucket and increment Next

Duke CS, Fall 2019 CompSci 516: Database Systems

52

Level=0,
h h
1 0
000 00
001 01
010 10
011 11
(This info
is for illustration
only!)

Duke CS, Spring 2016

Example of Linear Hashing

No=4=2%, dg=2

PRIMARY

Next=0 PAGES

N\

h 32144* 35"1

9*

Data entry r

25*|5’: with h(r)=5

~—

141 18’110*1301\ rimary

P
bucket page

L
311 35’1 7* 11:1_

(The actual contents
of the linear hashed

file)

Insert 43* = 101011

ho(43) =11

Full

Insert in an overflow page
Need a split at Next (=0)
Entries in 00 is distributed to
000 and 100

CompSci 516: Data Intensive Computing Systems 26

Level=0,
h h
1 0
000 00
001 01
010 10
011 11
(This info
is for illustration
only!)

Example of Linear Hashing

No=4=2%, dg=2

PRIMARY

Next=0 PAGES

N\

Duke CS, Spring 2016

h 32144* 35"1

Data entry r

9% 25%5* | with h(r)=5

~—

141 18’110*1301\ Primary

bucket page

L
311 35’1 7* 11:1_

(The actual contents
of the linear hashed

file)

000

001

010

011

100

* Nextisincremented after split
* Note the difference between overflow page of 11
and split image of 00 (000 and 100)

CompSci 516: Data Intensive Computing Systems

Level=0, N,=4=29, d,=2
h PRIMARY OVERFLOW
0 PAGES PAGES
32
00 1
I\Q(tﬂ T
o1 9* 25*|5*
!
10 14*| 18 10*130’[
1
1 7* £
" 3 135*| 11 ; 43»{
00 | |44 36"

27

Example of Linear Hashing

Search for 18* = 10010
* between Next (=1) and 4
* this bucket has not been split Level=0, Ny=4=29, dy=2
* 18 should be here

h h PRIMARY OVERFLOW
Search for 32* = 100000 or 44* = 101100 1 0 PAGES PAGES
Between 0 and Next-1
321l
* Needh; 000 00
I\Q(tﬂ o
Not all insertion triggers split 001 o1 9*| 25% 5*
* Insert 37* =100101 1
* Has space
010 | 10 141181 10*1301
Splitting at Next?
*
* No overflow bucket needed 011 | 11 3113547% 117 . 431
» Just copy at the image/original
100 | 00 447 36*

Next = Nje-1 and a split? -
e Start a new round
* Increment Level
* NextresettoO

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 28

000

001

010

011

100

Not all insertion triggers split

Example of Linear Hashing

Insert 37* = 100101

Has

Level=0,

h
0

00

01

10

11

00

w

space

No=4=2%,

dy=2

PRIMARY

PAGES

321

t=1

9% zsﬂs*

14118110ﬂ30*

3113517*

111

OVERFLOW
PAGES

434

447 36%

Duke CS, Spring 2016

Y

000

001

010

011

100

Level=0,

h
0

00

01

10

11

00

I\Q(

No=4 =290,

d,=2

PRIMARY

PAGES

321

t=1

9* zsﬂs*

14118110130

3113517*

1
111

447 36*

CompSci 516: Data Intensive Computing Systems

Y

28

OVERFLOW
PAGES

43"

000

001

010

011

100

Level=0, N,=4=2%, d,=2

00

01

10

11

00

Example of Linear Hashing

e Splitting at Next?

No overflow bucket needed

Just copy at the image/original

PRIMARY
PAGES

37+

Wtﬂ
9* zsﬂs*

14*|18’t|1o*13.0’L

3113517* 111

\4

447 36*

Duke CS, Spring 2016

OVERFLOW 1
PAGES

000

001

010

43"

011

100

101

insert 29* =11101

Leve|=0, No =4 =290 ’

00

01

10

11

00

01

PAGES

do=

PRIMARY

321

9* zsﬂ

iN€§t=2

14118110j

30%

3113517*

111

2

OVERFLOW
PAGES

43"

44 36%

5% | 37%29¢

CompSci 516: Data Intensive Computing Systems

\ 4

28

Example: End of a Round

(after inserting 22*, 66%*, 34*
- check yourself)

hy

000
001
010
011
100

101

110

Level=0,

ho

00

01

10
11
00

01

10

insert 50* = 110010

[hy |hy |
0000 | 000
PRIMARY OVERFLOW
PAGES
PAGES 0001 001
32*
a8 0010 | 010
9* 25*
— 0011| 011
66*18*10* 34*
N) 0100|100
31*35%7* 11% [43*
0101|101
44%36*
5* 37*29* 0110|110
14*30%22* 0111|111

Duke CS, Fall 2019

D0

11

10

11

CompSci 516: Database Systems

Level=1,

N,= 8 =2¢1,

PRIMARY
PAGES

Next=0

N

32%

9* 25*

OVERFLOW
PAGES

66* 18* 10* 34*

50*

43* 35* 11*

44* 36*

5% 37* 29*

14* 30* 22*

31*%7*

58

LH vs. EH

* They are very similar
— h; to h,,, is like doubling the directory
— LH: avoid the explicit directory, clever choice of split
— EH: always split — higher bucket occupancy

e Uniform distribution: LH has lower average cost
— No directory level

* Skewed distribution

— Many empty/nearly empty buckets in LH
— EH may be better

System Catalogs

For each index:

— structure (e.g., B+ tree) and search key fields

For each relation:

-~ name, file name, file structure (e.g., Heap file)

— attribute name and type, for each attribute

— index name, for each index

— integrity constraints

For each view:

— view name and definition

Plus statistics, authorization, buffer pool size, etc.

(described in [RG] 12.1)

Catalogs are themselves stored as relations!

Duke CS, Fall 2019 CompSci 516: Database Systems 60

Summary: Indexes

Search key k, data entries k*, data pages
Primary/secondary, clustered/unclustered, and Alt-1, 2, 3
Tree-based index: good for both equality and range searches

Hash-based index: very good for equality searches, not useful for
range searches, but skew hurts

Static vs. dynamic options

ISAM or Static Hashing can lead to long overflow chains with data
skew and updates— waste of space and inefficient

Dynamic options : B+-tree and EH/LH

Understand how to search, insert, and delete, and pros/cons

Duke CS, Fall 2019 CompSci 516: Database Systems 61

