CompSci 516
 Database Systems

Lecture 10
 Tree and Hash Index

Instructor: Sudeepa Roy

Announcements (09/26)

- HW1 Deadlines!
- Today: Q4 (last late day with penalty)
- Q5: next to next Tuesday 10/01
- Project details and ideas posted
- Informal proposal due in a week 10/3 (which problem you want to work on and the group members)
- Add your name or add your group to the online spreadsheet
- 3-4 students in each group (some ongoing projects need fewer students)
- Work on the projects more when a HW is not due!

Methods for indexing

- Recap index on blackboard
- Tree-based
- Hash-based

Tree-based Index and B^{+}-Tree

Range Searches

- "Find all students with gpa > 3.0"
- If data is in sorted file, do "binary search" to find first such student, then scan to find others.
- Cost of binary search can be quite high.

Index file format

index entry

- Simple idea: Create an "index file"
- <first-key-on-page, pointer-to-page>, sorted on keys

Index File

Data File

Can do binary search on (smaller) index file but may still be expensive: apply this idea repeatedly

Indexed Sequential Access Method (ISAM)

- Leaf-pages contain data entry - also some overflow pages
- DBMS organizes layout of the index - a static structure
- If a number of inserts to the same leaf, a long overflow chain can be created
- affects the performance

Leaf pages contain data entries.

B+ Tree

- Most Widely Used Index: a dynamic structure
- Insert/delete at $\log _{\mathrm{F}} \mathrm{N}$ cost = height of the tree (cost = I/O)
- $F=$ fanout, $N=$ no. of leaf pages
- tree is maintained height-balanced
- Minimum 50% occupancy
- Each node contains $\mathrm{d}<=\mathrm{m}$ <= 2d entries
- Root contains $1<=\mathrm{m}<=2 \mathrm{~d}$ entries
- The parameter \mathbf{d} is called the order of the tree
- Supports equality and range-searches efficiently

B+ Tree Indexes

- Leaf pages contain data entries, and are chained (prev \& next)
- Non-leaf pages have index entries; only used to direct searches:
index entry

Example B+ Tree

- Find

Search begins at root, and key comparisons direct it to a leaf

- 28*?
- 29*?
- All > 15* and < 30*

B+ Trees in Practice

- Typical order: $d=100$. Typical fill-factor: 67\%
- average fanout $\mathrm{F}=133$
- Typical capacities:
- Height 4: $133^{4}=312,900,700$ records
- Height 3: $133^{3}=2,352,637$ records
- Can often hold top levels in buffer pool:
- Level 1 = 1 page $=8$ Kbytes
- Level $2=133$ pages $=1 \mathrm{Mbyte}$
- Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

- Find correct leaf L
- Put data entry onto L

See this slide later,

First, see examples on the next few slides

- If L has enough space, done
- Else, must split L
- into L and a new node L2
- Redistribute entries evenly, copy up middle key.
- Insert index entry pointing to L2 into parent of L.
- This can happen recursively
- To split index node, redistribute entries evenly, but push up middle key
- Contrast with leaf splits
- Splits "grow" tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

Inserting 8* into Example B+ Tree

- Copy-up: 5 appears in leaf and the level above
- Observe how minimum occupancy is
 guaranteed

Inserting 8* into Example B+ Tree

- Note difference between copy-up and push-up
- What is the reason for this difference?
- All data entries must appear as leaves
- (for easy range search)
- no such requirement for indexes

- (so avoid redundancy)

Example B+ Tree After Inserting 8*

- Notice that root was split, leading to increase in height.
- In this example, we can avoid split by re-distributing entries (insert 8 to the $2^{\text {nd }}$ leaf node from left and copy it up instead of 13)
- however, this is usually not done in practice - since need to access 1-2 extra pages always (for two siblings), and average occupancy may remain unaffected as the file grows

Deleting a Data Entry from a B+ Tree

- Start at root, find leaf L where entry belongs
- Remove the entry
- If L is at least half-full, done!
- If L has only d-1 entries,

See this slide later,

First, see examples on the next few slides

- Try to re-distribute, borrowing from sibling (adjacent node with same parent as L)
- If re-distribution fails, merge L and sibling
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L
- Merge could propagate to root, decreasing height

Example Tree: Delete 19*

- We had inserted 8*
- Now delete 19*
- Easy

Example Tree: Delete 19*

Example Tree: Delete 20*

Example Tree: Delete 20*

- < 2 entries in leaf-node
- Redistribute

Example Tree: Delete 20*

- Notice how middle key is copied up

Example Tree: ... And Then Delete 24*

Example Tree: ... And Then Delete 24*

- Once again, imbalance at leaf
- Can we borrow from sibling(s)?
- No - d-1 and d entries ($d=2$)
- Need to merge

Example Tree: ... And Then Delete 24*

- Imbalance at parent
- Merge again
because, three index 5, 13, 30
but five pointers to leaves
- But need to "pull down" root index entry

Final Example Tree

Example of Non-leaf Re-distribution

- An intermediate tree is shown
- In contrast to previous example, can re-distribute entry from left child of root to right child

After Re-distribution

- Intuitively, entries are re-distributed by `pushing through' the splitting entry in the parent node.
- It suffices to re-distribute index entry with key 20; we've re-distributed 17 as well for illustration.

Duplicates

Secondary indexes

- First Option:
- The basic search algorithm assumes that all entries with the same key value resides on the same leaf page
- If they do not fit, use overflow pages (like ISAM)
- Second Option:
- Several leaf pages can contain entries with a given key value
- Search for the left most entry with a key value, and follow the leafsequence pointers
- Need modification in the search algorithm
- Alt-2 and 3: if $\mathrm{k}^{*}=\langle\mathrm{k}$, rid $>$, several entries are to be searched
- Or include rid in k - becomes unique index, no duplicate
- If $k^{*}=<k$, rid-list>, same solution, but if the list is long, again a single entry can span multiple pages

A Note on `Order’

- Order (d)
- denotes minimum occupancy
- Replaced by physical space criterion in practice (`at least half-full')
- Index pages can typically hold many more entries than leaf pages
- Variable sized records and search keys (and even fixed-size for Alt-3) mean different nodes will contain different numbers of entries.

Summary

- Tree-structured indexes are ideal for range-searches, also good for equality searches
- ISAM is a static structure
- Only leaf pages modified; overflow pages needed
- Overflow chains can degrade performance with updates
- B+ tree is a dynamic structure
- Inserts/deletes leave tree height-balanced; $\log _{F} N$ cost
- High fanout (F) means depth rarely more than 3 or 4
- Almost always better than maintaining a sorted file
- Most widely used index in DBMS because of its versatility
- One of the most optimized components of a DBMS

Hash-based Index

Hash-Based Indexes

- Records are grouped into buckets
- Bucket = primary page plus zero or more overflow pages
- Hashing function \mathbf{h} :
$-h(r)=$ bucket in which (data entry for) record r belongs
- \mathbf{h} looks at the search key fields of r
- No need for "index entries" in this scheme

Example: Hash-based index

$h 1(r)=r \bmod 3$
$h 2(r)=r \bmod 2$

Introduction

- Hash-based indexes are best for equality selections
- Find all records with name = "Joe"
- Cannot support range searches
- But useful in implementing relational operators like join (later)
- Static and dynamic hashing techniques exist - trade-offs similar to ISAM vs. B+ trees

Static Hashing

- Pages containing data = a collection of buckets
- each bucket has one primary page, also possibly overflow pages
- buckets contain data entries k^{*}

Static Hashing

- \# primary pages fixed
- allocated sequentially, never de-allocated, overflow pages if needed.
- $h(k) \bmod N=$ bucket to which data entry with key k belongs
- N = \# of buckets (why do we need mod N?)

Static Hashing

- Hash function works on search key field of record r
- Must distribute values over range 0 ... $\mathrm{N}-1$
- $h($ key $)=(a *$ key $+b)$ usually works well ----- then, bucket $=h($ key $) \bmod N$
- $\quad a$ and b are constants - chosen to tune h
- Advantage:
- \#buckets known - pages can be allocated sequentially
- search needs 1 I/O (if no overflow page)
- insert/delete needs 2 I/O (if no overflow page) (why 2?)
- Disadvantage:
- Long overflow chains can develop if file grows (data skew)
- Can degrade performance or waste of space if file shrinks
- Solutions:
- keep some pages say 80% full initially
- Periodically rehash if overflow pages (can be expensive)
- or use Dynamic Hashing!

Dynamic Hashing Techniques

- Extendible Hashing
- Linear Hashing

Extendible Hashing

- Consider static hashing
- Bucket (primary page) becomes full
- Why not re-organize file by doubling \# of buckets?
- Reading and writing (double \#pages) all pages is expensive
- Idea: Use directory of pointers to buckets
- double \# of buckets by doubling the directory, splitting just the bucket that overflowed
- Directory much smaller than file, so doubling it is much cheaper
- Only one page of data entries is split
- No overflow page (new bucket, no new overflow page)
- Trick lies in how hash function is adjusted

Example

- Directory is array of size 4
- each element points to a bucket
- \#bits to represent directory = log of \max no. of buckets $=\log 4=2$ = global depth
- To find bucket for search key r
- take last global depth \# bits of $h(r)$

- assume $h(r)=r$
- If $h(r)=5=$ binary 101
- it is in bucket pointed to by 01

Example

Insert:

- If bucket has space, insert
- If bucket is full, split it
- allocate new page
- re-distribute

Suppose inserting 13*

- binary = 1101

DATA PAGES

Example

Insert:

- If bucket has space, insert
- If bucket is full, split it
- allocate new page
- re-distribute

- Already full

DATA PAGES

- To split, consider last three bits of 10100
- Last two bits the same 00 - the data entry will belong to one of these buckets
- Third bit to distinguish them

Example

When 20 is inserted here

Example

Global depth: Max \# of bits needed to tell which bucket an entry belongs to
Local depth: \# of bits used to determine if an entry belongs to this bucket

- also denotes whether a directory doubling is needed while splitting
- no directory doubling needed when $9^{*}=1001$ is inserted (LD< GD)

When does bucket split cause directory doubling?

- Before insert, local depth of bucket = global depth
- Insert causes local depth to become > global depth
- directory is doubled by copying it over and 'fixing' pointer to split image page

Comments on Extendible Hashing

- If directory fits in memory, equality search answered with one disk access (to access the bucket); else two.
- 100 MB file, 100 bytes/rec, 4KB page size, contains 10^{6} records (as data entries) and 25,000 directory elements; chances are high that directory will fit in memory
- if the distribution of hash values is skewed, directory can grow large
- Delete: (go in reverse direction)
- If removal of data entry makes bucket empty, can be merged with `split image'
- If each directory element points to same bucket as its split image, can halve directory.

Linear Hashing

- This is another dynamic hashing scheme
- an alternative to Extendible Hashing
- LH handles the problem of long overflow chains
- without using a directory
- handles duplicates and collisions
- very flexible w.r.t. timing of bucket splits

Linear Hashing: Basic Idea

- Use a family of hash functions $h_{0}, h_{1}, h_{2}, \ldots$
- h_{i} (key) $=\mathrm{h}$ (key) $\bmod \left(2^{\mathrm{i}} \mathrm{N}\right.$)
- $\mathrm{N}=$ initial \# buckets
- h is some hash function (range is not 0 to $\mathrm{N}-1$)
- If $N=2^{d_{0}}$, for some d_{0}, h_{i} consists of applying h and looking at the last d_{i} bits, where $d_{i}=d_{0}+i$
- Note: $h_{i}($ key $)=h($ key $) \bmod \left(2^{d_{0}+i}\right)$
- h_{i+1} doubles the range of h_{i}
- if h_{i} maps to M buckets, h_{i+1} maps to 2 M buckets
- similar to directory doubling
- Suppose $N=32, d_{0}=5$
- $h_{0}=h \bmod 32$ (last 5 bits)
- $h_{1}=h \bmod 64$ (last 6 bits)
- $h_{2}=h \bmod 128$ (last 7 bits) etc.

Linear Hashing: Rounds

- Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin
- During round Level, only $h_{\text {Level }}$ and $h_{\text {Level }+1}$ are in use
- The buckets from start to last are split sequentially
- this doubles the no. of buckets
- Therefore, at any point in a round, we have
- buckets that have been split
- buckets that are yet to be split
- buckets created by splits in this round

Overview of LH File

- In the middle of a round Level - originally 0 to $\mathrm{N}_{\text {Level }}$
 split
Next to $N_{\text {Level }}$ yet to be split
- Round ends when all N_{R} initial (for round R) buckets are split

Overview of LH File

- In the middle of a round Level - originally 0 to $\mathrm{N}_{\text {Level }}$

Bucket to be split Next
Buckets that existed at the beginning of this round:
this is the range of

$\mathbf{N}_{\text {Level }}$

- Buckets 0 to Next-1 have been split
Next to $N_{\text {Level }}$ yet to be split
- Round ends when all N_{R} initial (for round R) buckets are split
if $h_{\text {Level }}(r)$ is in this range, must use
$\mathbf{h}_{\text {Level }+1}(\mathbf{r})$ to decide if entry is in `split image' bucket. if \(h_{\text {Level }}(r)\) is in this range, no need `split image' buckets:
created (through splitting of other buckets) in this round
- Search: To find bucket for data entry r, find $h_{\text {Level }}(r)$:
- If $h_{\text {Level }}(r)$ in range 'Next to $N_{\text {Level }}$ ', r belongs here.
- Else, r could belong to bucket $h_{\text {Level }}(r)$ or $h_{\text {Level }}(r)+N_{R}$
- Apply $h_{\text {Level }+1}(r)$ to find out

Linear Hashing: Insert

- Insert: Find bucket by applying $h_{\text {Level }} / h_{\text {Level }+1}$:
- If bucket to insert has space
- Insert
- If bucket to insert into is full:

1. Add overflow page and insert data entry
2. Split Next bucket and increment Next

Example of Linear Hashing

Level=0, $\quad \mathrm{N}_{0}=4=2^{\mathrm{do}}, \quad \mathrm{d}_{0}=2$

h	h	PRIMARY
1	0	Next=0 PAGES
000	00	32* $44 * 36 *$
001	01	9* 25 * 5^{*} * Data entry r with $h(r)=5$
010	10	Primary bucket page
011	11	31* $35 * 7 * 11^{*}$
his info		(The actual contents
for illustration		of the linear hashed
y!)		file)

- Insert 43* $=101011$
- $h_{0}(43)=11$
- Full
- Insert in an overflow page
- Need a split at Next (=0)
- Entries in 00 is distributed to 000 and 100

Example of Linear Hashing

Level=0, $\quad \mathrm{N}_{0}=4=2^{\mathrm{d} 0}, \quad \mathrm{~d}_{0}=2$

- Next is incremented after split
- Note the difference between overflow page of 11 and split image of 00 (000 and 100)

Example of Linear Hashing

- \quad Search for $18^{*}=10010$
- between Next (=1) and 4
- this bucket has not been split
- 18 should be here
- Search for $32^{*}=100000$ or $44^{*}=101100$
- Between 0 and Next-1
- Need h_{1}
- Not all insertion triggers split
- Insert 37* = 100101
- Has space
- Splitting at Next?
- No overflow bucket needed
- Just copy at the image/original
- Next = $\mathrm{N}_{\text {level }}{ }^{-1}$ and a split?

Level=0, $\quad N_{0}=4=2^{d 0}, \quad d_{0}=2$

- Start a new round
- Increment Level
- Next reset to 0

Example of Linear Hashing

- Not all insertion triggers split
- Insert 37* = 100101
- Has space

Level= $0, \quad N_{0}=4=2^{d 0}, \quad d_{0}=2$

Level=0, $\quad N_{0}=4=2^{d 0}, \quad d_{0}=2$

Example of Linear Hashing

- Splitting at Next?
- No overflow bucket needed
- Just copy at the image/original

Level=0, $\quad N_{0}=4=2^{d 0}, \quad d_{0}=2$

Level=0, $\quad \mathrm{N}_{0}=4=2^{\mathrm{d} 0}, \quad \mathrm{~d}_{0}=2$
insert 29* $=11101$

Example: End of a Round

insert 50* $=110010$
Level=1, $\quad \mathrm{N}_{1}=8=2^{\mathrm{d} 1}, \quad \mathrm{~d}_{1}=3$
(after inserting 22*, 66*, 34*

- check yourself)

h_{2}	h_{1}	hod	PRIMARY PAGES
0000	000	00	32*
0001	001	01	9* 25*
0010	010	10	66* 18* 10* $34 *$
0011	011	1	43* 35* 11*
0100	100	00	44* 36*
0101	101	11	5* 37* 29*
0110	110	10	14* 30* 22*
0111	111	11	31*7*

LH vs. EH

- They are very similar
$-h_{i}$ to h_{i+1} is like doubling the directory
- LH: avoid the explicit directory, clever choice of split
- EH: always split - higher bucket occupancy
- Uniform distribution: LH has lower average cost
- No directory level
- Skewed distribution
- Many empty/nearly empty buckets in LH
- EH may be better

System Catalogs

- For each index:
- structure (e.g., B+ tree) and search key fields
- For each relation:
- name, file name, file structure (e.g., Heap file)
- attribute name and type, for each attribute
- index name, for each index
- integrity constraints
- For each view:
- view name and definition
- Plus statistics, authorization, buffer pool size, etc.
- (described in [RG] 12.1)

Catalogs are themselves stored as relations!

Summary: Indexes

- Search key k, data entries k^{*}, data pages
- Primary/secondary, clustered/unclustered, and Alt-1, 2, 3
- Tree-based index: good for both equality and range searches
- Hash-based index: very good for equality searches, not useful for range searches, but skew hurts
- Static vs. dynamic options
- ISAM or Static Hashing can lead to long overflow chains with data skew and updates- waste of space and inefficient
- Dynamic options : B+-tree and EH/LH
- Understand how to search, insert, and delete, and pros/cons

