10/1/19

duke CS, Fall 2019

CompSci 516
Database Systems

Lecture 11
External Sorting
And
Index Selection

Instructor: Sudeepa Roy

Announcements
* HW1-part 3 due today (Tues, 10/1)

* Informal project proposal due Thursday, 10/3
by email and on spreadsheet

* Consider joining one of the existing research
projects!

— You will get an idea of database research and how
to work on a paper

ke CS, Fall 2019 CompSci 516: Database Systems

Today

e External sort

* |Index selection

Duke CS, Fall 2019

External Sorting

Why do we need sorting in databases?

Duke CS, Fall 2019

Why Sort?

quick review of mergesort on blackboard

516: Database Systems

2-Way Sort: Requires 3 Buffers

« Suppose N = 2¥ pages in the file
* Pass 0: Read a page, sort it, write it.

- repeat for all 2 pages
- only one buffer page is used

¢ Passl:

- Read two pages, sort (merge) them using one output page, write them to disk
— repeat 2! times
- three buffer pages used

» Pass2,3,4, ... continue

INPUT 1
 E— 1
J‘ INPUT 2

Main memory buffers Disk

ke C, Fall 2019 CompSci 516: Database Systems

Two-Way External Merge Sort
@ @ E] - Input file

Each sorted sub-fileiscalled = T T T T T T T a0
arun [13] [2] @ 1-page runs

— each run can contain
multiple pages

PASS 1
E #rpage runs
Each pass we read + write each

s ~ PASS 2
page in file. [2:3]
E % 4-page runs
N pages in the file, £

=>the number of passes PASS 3
=[log, N]+1
So toal cost is: %
2N([1og, N+1) 2
8-page runs}

[4.5]
Not too practical, but useful to learn [e.6|
basic concepts for external sorting

10/1/19

General External Merge Sort

* Suppose we have more than 3 buffer pages.
* How can we utilize them?

* To sort a file with N pages using B buffer pages:
- Pass 0: use B buffer pages:
+ Produce [N/B] sorted runs of B pages each.

- Pass 1, 2, ..., etc.: merge B-1 runs to one output page
- keep writing to disk once the output page is full

= | []
| E—
] INPUT 2 —
| E—
INPUT B-1
Suke CS, Fall 2 HSk B Mai Disk ,

Cost of External Merge Sort

¢ Number of passes:1 + [logs.1[N/B]]
e Cost =2N * (# of passes) —why 2 times?
» E.g., with 5 buffer pages, to sort 108 page file:
Pass 0: sorting 5 pages at a time
- [108/5] = 22 sorted runs of 5 pages each (last run is only 3
pages)
Pass 1: 4-way merge
- [22/4] = 6 sorted runs of 20 pages each (last run is only 8 pages)
Pass 2: 4-way merge
- (but 2-way for the last two runs)
- [6/4] = 2 sorted runs, 80 pages and 28 pages
Pass 3: 2-way merge (only 2 runs remaining)
- Sorted file of 108 pages

Duke CS, Fall 2019 Com

Number of Passes of External Sort

High B is good, although CPU cost increases

N B=3 [B=5 [B=9 |B=17|B=129|B=257
100 7 4 3 2 1 1
1,000 0 5 4 3 2 2
10,000 37 5 4 2 2
100,000 7 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 | 4 3
100,000,000 26 14 9 7 | 4 4
1,000,000,000 30 (15 | 10 8 | 5 4

I/O for External Merge Sort

* If 10 buffer pages
— either merge 9 runs at a time with one output buffer
— or 8 runs with two output buffers
* |f #page I/O is the metric
— goal is minimize the #passes
— each page is read and written in each pass
* If we decide to read a block of b pages sequentially

— Suggests we should make each buffer (input/output) be a block of
pages
— But this will reduce fan-out during merge passes
- i.e. not as many runs can be merged again any more
— In practice, most files still sorted in 2-3 passes

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Double Buffering

* To reduce CPU wait time for I/O request to
complete, can prefetch into "shadow block'’.

\
— —
|:|-——% —

v0 0
X (ineurz]]
— PR —
b
) block size
DISk DiSK
B main memory buffers, k-way merge

Duke S, Fall 2019 CompSci 516: Database Systems 12

Using B+ Trees for Sorting

* Scenario: Table to be sorted has B+ tree index on
sorting column(s)

* |dea: Can retrieve data entries (then records) in
order by traversing leaf pages.

* Is this a good idea?

* Cases to consider:
— B+treeis clustered: Good idea!
— B+ tree is not clustered: Could be a very bad idea!

Duke CS, Fall 2019 Compsci 516 Database Systems 13

10/1/19

Clustered B+ Tree Used for Sorting

e Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative 1)

Index
(Directs search)

ata Entries

* If Alternative 2 is used? Sequence set’)

Additional cost of

g8 B
retrieving data records: / I //// \\\
each page fetchedjust. I T

once Data Records

17

Unclustered B+ Tree Used for Sorting

* Alternative (2) for data entries; each data entry
contains rid of a data record

* In general, one I/O per data record!

Index
(Directs search)

Data Entries
("Sequence set")

Duke CS, Fall 2019

Summary

e External sorting is important; DBMS may dedicate
part of buffer pool for sorting!

* External merge sort minimizes disk 1/0O cost:
- Pass 0: Produces sorted runs of size B (# buffer pages)
— Later passes: merge runs
- # of runs merged at a time depends on B, and block size.
- Larger block size means less 1/O cost per page.
- Larger block size means smaller # runs merged.

- In practice, # of passes is rarely more than 2 or 3

Duke S, Fall 2019 Compsci 516: Database Systems 16

Selection of Indexes

Duke CS, Fall 2019 CompSci 516: Database Systems 17

Different File Organizations

We need to understand the importance
Search key = <age, sal> of appropriate file organization and index
. .) How does a “composite index” look like?
Consider following options:
Why should not we have all possible indexes?

e Heapfiles

- random order; insert at end-of-file
* Sorted files

— sorted on <age, sal>
* Clustered B+ tree file

- search key <age, sal>
e Heap file with unclustered B*-tree index

— onsearch key <age, sal>
e Heap file with unclustered hash index

— onsearch key <age, sal>

Duke S, Fall 2019 CompSci 516: Database Systems 18

Possible Operations

Try to understand which index is better suited

For which operations
* Scan

- Fetch all records from disk to buffer pool
e Equality search
- Find all employees with age = 23 and sal = 50
- Fetch page from disk, then locate qualifying record in page
Range selection
- Find all employees with age > 35

* Insert arecord

— identify the page, fetch that page from disk, inset record, write back
to disk (possibly other pages as well)

* Delete a record
— similar toinsert

Duke CS, Fall 2019 CompSci 516: Da

10/1/19

Understanding the Workload

* A workload is a mix of queries and updates

* For each query in the workload:
- Which relations does it access?
- Which attributes are retrieved?

- Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

* For each update in the workload:

- Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

— The type of update (INserT/DELETE/UPDATE), and the attributes that are
affected

uke CS, Fall 2019

Choice of Indexes

¢ What indexes should we create?

— Which relations should have indexes? What field(s)
should be the search key? Should we build several
indexes?

¢ For each index, what kind of an index should it be?
— Clustered? Hash/tree?

Duke CS, Fall 2019 CompSci 516: Database Systems

Trade-offs for Indexes

* Indexes can make
— queries go faster
— updates slower

* Require disk space, too

Duke S, Fall 2019 Compsci 516: Database Systems

Index Selection Guidelines

 Attributes in WHERE clause are candidates for index keys
— Exact match condition suggests hash index
— Range query suggests tree index
— Clustering is especially useful for range queries
« can also help on equality queries if there are many duplicates

* Try to choose indexes that benefit as many queries as possible

— Since only one index can be clustered per relation, choose it based on
important queries that would benefit the most from clustering

* Multi-attribute search keys should be considered when a WHERE clause
contains several conditions

- Order of attributes is important for range queries

* Note: clustered index should be used judiciously
— expensive updates, although ch
2019 Corr

Duke CS, Fall 20

Examples of Clustered Indexes

What is a good indexing
strategy?

SELECT E.dno
FROM Emp E
WHERE E.age>40

Which attribute(s)?
Clustered/Unclustered?
B+ tree/Hash?

Duke CS, Fall 2019

10/1/19

Examples of Clustered Indexes

What is a good indexing
strategy?

SELECT E.dno, COUNT (*)
FROM Emp E

WHERE E.age>10

GROUP BY E.dno

Which attribute(s)?
Clustered/Unclustered?
B+ tree/Hash?

Duke CS, Fall 2019 CompSci 516: Database Systems

Examples of Clustered Indexes

What is a good indexing
strategy?

SELECT E.dno
FROM Emp E
WHERE E.hobby="Stamps’

Which attribute(s)?
Clustered/Unclustered?
B+ tree/Hash?

SELECT E.dno
FROM EmpE
WHERE E.eid=50

duke CS, Fall 2019 Compsci 516: Database Systems

Indexes with Composite Search Keys

Composite Search Keys: Search on a

Examples of composite key
combination of fields i

indexes using lexicographic order.

Equality query: Every field value is 1180 "
equal to a constant value. E.g. wrt
<sal,age> index: 12.10 12
12.20 name age sal 12
— age=20and sal =75
13.75 bob 1210 13
Range query: Some field value is not a <age, sal> cal 1180, <age>
constant. E.g.: joe 12 20
— sal > 10— which combination(s) 1012 sue 13 75 10
would help? - Data records 20
7513 sorted by name 75
— <age, sal> does not help 80.11 80
— B+tree on <sal> or <sal, age> helps <sal, age> <sal>
— has to be a prefix Data entries in index Data entries

sorted by <sal,age> sorted by <sal>

Check yourself

Composite Search Keys

To retrieve Emp records with age = 30 anp sal =4000, an index on
<age,sal>would be better than an index on age or an index on sal
— first find age = 30, among them search sal = 4000

If condition is: 20 < age <30 anp 3000 < sal < 5000:

— Clustered tree index on <age,sal> or <sal,age> is best.

If condition is: age =30 anp 3000 < sal < 5000:
— Clustered <age,sal> index much better than <sal,age> index

— more index entries are retrieved for the latter

Composite indexes are larger, updated more often (drawback)

Duke S, Fall 2019 Compsci 516: Database Systems 2

Index-Only Plans

* A number of queries can be answered without retrieving any
tuples from one or more of the relations involved if a suitable
index is available

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, COUNT(¥)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

For index-only strategies,
clustering is not
important

Duke CS, Fall 2019 Cor

