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Announcements (Thurs, 10/17)

• Midterm next week 10/24 (Thursday) in class!
– Everything until and including 10/22 is included

• HW2
– Part 1 due next Monday 10/21
– Part-2 deadline extended to Thursday 10/31

• Midterm project report extended to Monday 11/4
– Submit 1 report per group on Sakai + attach to your private group 

thread on Piazza
– Work on your projects!

• If you have questions on grade, send an email to 
compsci516-staff@cs.duke.edu 
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Reading Material

• [RG]
– Query optimization: Chapter 15 (overview only)

• [GUW]  
– Chapter 16.2-16.7

• Original paper by Selinger et al. :
– P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a Relational 

Database Management System
Proceedings of ACM SIGMOD, 1979. Pages 22-34

– No need to understand the whole paper, but take a look at the example (link on the course webpage)
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Query Blocks: Units of Optimization

• Query Block
– No nesting
– One SELECT, one FROM
– At most one WHERE, GROUP BY, HAVING

• SQL query 
• => parsed into a collection of query 

blocks
• => the blocks are optimized one block 

at a time

• Express single-block it as a relational 
algebra (RA) expression

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT  MAX (S2.age)
FROM Sailors S2
GROUP BY  S2.rating)

Nested blockOuter block



Cost Estimation
• For each plan considered, must estimate cost:

• Must estimate cost of each operation in plan tree.
– Depends on input cardinalities
– We’ve discussed how to estimate the cost of operations 

(sequential scan, index scan, joins, etc.)

• Must also estimate size of result for each operation in 
tree
– gives input cardinality of next operators

• Also consider 
– whether the output is sorted
– intermediate results written to disk
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Relational Algebra Equivalences
• Allow us to choose different join orders and to `push’ selections and 

projections ahead of joins.

( ) ( )( )s s sc cn c cnR R1 1Ù Ù º... . . .

( )( ) ( )( )s s s sc c c cR R1 2 2 1º (Commute)

v Projections: ( ) ( )( )( )p p pa a anR R1 1º . . . (Cascade)

v Joins: !"R      (S     T)      (R     S)      T!" !" !"º (Associative)

!"(R     S)      (S     R) !" º (Commute)

(Cascade)

There are many more intuitive equivalences, see 15.3.4 for details if interested
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Notation

• T(R) :  Number of tuples in R
• B(R) :  Number of blocks (pages) in R
• V(R, A) : Number of distinct values of attribute 

A in R 
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Query Optimization Problem

Pick the best plan from the space of 
physical plans
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Challenge:

• Do not want to execute more than one plans

• Need to estimate the cost without executing the 
plan!

Cost-based Query Optimization

Pick the plan with least cost

“heuristic-based” optimizer (e.g. push selections down) have 
limited power and not used much
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Cost-based Query Optimization

Pick the plan with least cost

Tasks:
1. Estimate the cost of individual operators

2. Estimate the size of output of individual operators

3. Combine costs of different operators in a plan

4. Efficiently search the space of plans

done

today

today

today
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Task 1 and 2
Estimating cost and size 
of different operators  
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• Size = #tuples, NOT #pages
• Cost = #page I/O

• need to consider whether the intermediate relation fits in 
memory, is written back to/read from disk (or on-the-fly goes to 
the next operator), etc.



Desired Properties of 
Estimating Sizes of Intermediate Relations

Ideally,
• should give accurate estimates (as much as 

possible)
• should be easy to compute
• should be logically consistent

– size estimate should be independent of how the 
relation is computed (e.g. which join algorithm/join 
order is used)

• But, no “universally agreed upon” ways to meet 
these goals 
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Cost of Table Scan

Table Scan

R

Cost: B(R)
Size: T(R)

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R
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Cost of Index Scan

Index Scan

R

Cost:  B(R) – if clustered
T(R) – if unclustered

Size: T(R)

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R

Note: 
1. size is independent of the implementation of the scan/index
2. Index scan is bad if unclustered
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Cost of Index Scan with Selection

Index Scan

R

Cost: B(R) * f – if clustered
T(R) * f – if unclustered

Size: T(R) * f 

= σR.A > 50 RX

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R

Reduction factor
f = (Max(R.A) - 50) / (Max(R.A) - Min(R.A))
assumes uniform distribution
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Cost of Index Scan with Selection
(and multiple conditions)

Index Scan

R

Cost: B(R) * f – if clustered
T(R) * f – if unclustered

Size: T(R) * f 

= σR.A > 50 and R.B = C RX

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R
V(R, A) : Number of distinct 
values of attribute A in R

Reduction factors
f1 = (Max(R.A) - 50) / (Max(R.A) - Min(R.A))

f2 = 1/ V(R, B)

f = f1 * f2 (assumes independence and uniform distribution)

assume index on 
(A, B)

range selection

value selection
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Cost of Projection
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“….” Scan

R

= πA RX

Cost: depends on the method 
of scanning R

B(R) for table scan or clustered index scan

Size: T(R)
But tuples are smaller
If you have more information on the size of the
smaller tuples, can estimate #I/O better



Size of Join

Quite tricky
• If disjoint A and B values

• then 0
• If A is key of R and B is foreign key of S

• then T(S)
• If all tuples have the same value of R.A= S.B = x

• then T(R) * T(S)

R

⨝R.A = S.B

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R
V(R, A) : Number of distinct 
values of attribute A in R

S
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Size of Join
Two standard assumptions

1. Containment of value sets:
• if V(R, A) <= V(S, B), then all A-values of R 

are included in B-values of S 
• e.g. satisfied when A is foreign key, B is key

2. Preservation of value sets:
• For all “non-joining” attributes, the set of 

distinct values is preserved in join
• V(R ⨝ S, C) = V(R, C), where C ≠ A is an 

attribute in R 
• V(R ⨝ S, D) = V(S, D), where D ≠ B is an 

attribute in S
• Helps estimate distinct set size in R ⨝ S ⨝ T

R

⨝R.A = S.B

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R
V(R, A) : Number of distinct 
values of attribute A in R

S
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Size of Join

Reduction factor 
f = 1/max(V(R, A), V(S, B))

Size = T(R) * T(S) * f

R

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R
V(R, A) : Number of distinct 
values of attribute A in R

⨝R.A = S.B

S
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Size of Join

Reduction factor 
f = 1/max(V(R, A), V(S, B))

Size = T(R) * T(S) * f

R

T (R) :  Number of tuples in R
B (R) :  Number of blocks in R
V(R, A) : Number of distinct 
values of attribute A in R

⨝R.A = S.B
Why max?
• Suppose V(R, A) <= V(S, B)
• The probability of a A-value joining with a B-value is 

1/V(S.B) = reduction factor
• Under the two assumptions stated earlier + uniformityS
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Assumes index on both A
and B
if one index: 1/V(…, ...)
if no index: say 1/10 



Announcements (Tues, 10/22)

• Sudeepa’s office hour today moved to tomorrow 12-1 
pm and 4:30-5 pm in LSRC D325

• Midterm on Thursday 10/24 in class!
– Everything up to today’s lecture is included

• HW2
– Part-1 due tonight
– Part-2 due next Thursday 10/31

• Midterm project report due Monday 11/4
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Review: Cost-based Query Optimization

Pick the plan with least cost

Tasks:
1. Estimate the cost of individual operators

2. Estimate the size of output of individual operators

3. Combine costs of different operators in a plan

4. Efficiently search the space of plans

done

done

today

today
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Review: Cost Estimation
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• For any operator in the query plan, need to estimate 
both 
– Size = no. of output tuples
– Cost = no. of pages I/O from disk

• We assume uniformity and independence
Q1. σR.A > 50 and R.B = 25 R
Suppose range of R.A  is [10, 100], R.B has 50 distinct values, 
and R has 900 tuples.  What is the size estimate of the  
output?

Q2. R(A, B) ⨝ S(B, C). S has 100 distinct values of B and 500 
tuples. What is the size estimate of the  output?



Task 3: Combine cost of different 
operators in a plan
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• Size = #tuples, NOT #pages
• Cost = #page I/O
• but, need to consider whether the intermediate relation fits in 

memory, is written back to disk (or on-the-fly goes to the next 
operator) etc.

With Examples
“Given” the physical plan



Example Query

Student (sid, name, age, address)
Book(bid, title, author)
Checkout(sid, bid, date)

Query:
SELECT S.name
FROM Student S, Book B, Checkout C
WHERE S.sid = C.sid
AND B.bid = C.bid
AND B.author = 'Olden Fames'
AND S.age > 12
AND S.age < 20
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Assumptions

• Student: S,     Book:  B,         Checkout:  C

• Sid, bid foreign key in C referencing S and B resp.
• There are 10,000 Student records stored on 1,000 pages.
• There are 50,000 Book records stored on 5,000 pages.
• There are 300,000 Checkout records stored on 15,000 

pages.
• There are 500 different authors.
• Student ages range from 7 to 24.

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)
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Student S Checkout C

sid

(File scan) (File scan)

(c) s 12<age<20 Ʌ  author = ‘Olden Fames’

Physical Query Plan – 1
Q. Compute
1. the cost and cardinality in 

steps (a)  to (d)
2. the total cost

Assumptions (given): 
• Data is not sorted on 

any attributes
• For (b), outer relation fit 

in memory
(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

bid

(Tuple-based nested loop
B inner) (b)

(d) P name(On the fly)

(On the fly)

Duke CS, Fall 2019 CompSci 516: Database Systems
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(Page-oriented
-nested loop, 
S outer, C inner)
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Student S Checkout C

sid

(File scan) (File scan)

(Page-oriented
-nested loop, 
S outer, C inner)

(c) s 12<age<20 Ʌ  author = ‘Olden Fames’

(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

Cost = 
B(S) + B(S) * B(C)

= 1000 + 1000 * 15000
= 15,001,000      

Cardinality = 
T(C) = 300,000
• foreign key join, output 

pipelined to next join
• Can apply the “formula” 

as well 

T(S) * T(C)/max (V(S, sid), 
V(C, sid) ) 
= T(C) 
since V(S, sid) > = V(C, sid) 

and T(S) = V(S, sid)

bid

(Tuple-based nested loop
B inner) (b)

(d) P name(On the fly)

(On the fly)

(a)

Duke CS, Fall 2019 CompSci 516: Database Systems
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Student S Checkout C

sid

(File scan) (File scan)

(c) s 12<age<20 Ʌ  author = ‘Olden Fames’

(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

Cost = 
T(S ⨝ C) * B(B)

= 300,000 * 5,000 = 15 * 108

Cardinality = 
T(S ⨝ C) = 300,000

• foreign key join
• don’t need scanning for 

outer relation
• outer relation fits in 

memory

bid

(Tuple-based nested loop
B inner) (b)

(d) P name(On the fly)

(On the fly)

(b)
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(Page-oriented
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S outer, C inner)
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Student S Checkout C

sid

(File scan) (File scan)

(c) s 12<age<20 Ʌ  author = ‘Olden Fames’

(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

Cost = 
0 (on the fly)

Cardinality = 
300,000 * 1/500 * 7/18
= 234 (approx)
(assuming uniformity and 
independence)bid

(Tuple-based nested loop
B inner) (b)

(d) P name(On the fly)

(On the fly)

(c, d)
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(Page-oriented
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S outer, C inner)
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Student S Checkout C

sid

(File scan) (File scan)

(c) s 12<age<20 Ʌ  author = ‘Olden Fames’

(a)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

Total cost =
1,515,001,000

Final cardinality = 
234 (approx)

bid

(Tuple-based nested loop
B inner) (b)

(d) P name(On the fly)

(On the fly)

(Total)
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(File scan)

(Page-oriented
-nested loop, 
S outer, C inner)
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Student SCheckout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

Physical Query Plan – 2
Q. Compute 
1. the cost and cardinality in 

steps (a)  to (g)
2. the total cost

Assumptions (given):
• Unclustered B+tree

index on B.author
• Clustered B+tree index 

on C.bid
• All index pages are in 

memory
• Unlimited memory

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

V(B,author) = 500
7 <= age <= 24
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
T(B) / V(B, author)
= 50,000/500 
= 100  (unclustered)    

Cardinality = 
100

(a)
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
100

(b)
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

• one index lookup per outer B 
tuple

• 1 book has T(C)/ T(B) = 6 
checkouts (uniformity)

• # C tuples per page = 
T(C)/B(C) = 20

• 6 tuples fit in at most 2 
consecutive pages (clustered) 
could assume 1 page as well

Cost <= 
100 * 2= 200     

Cardinality = 
100 * 6 = 600

(c)
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
600

(d)
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38

Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Outer relation is already in 
(unlimited) memory

need to scan S relation

Cost = 
B(S) = 1000 

Cardinality = 
600
(one student per checkout)

(e)
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
600 * 7/18 = 234 (approx)

(f)
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
234

(g)
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(File scan)
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Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

(File scan)

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid (On the fly)

(On the fly)

Total cost =
1300 
(compare with 1,515,001,000 
for plan 1!)

Final cardinality =
234 (approx)
(same as plan 1! )

(total)
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Task 4:
Efficiently searching the plan space
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Use dynamic-programming based 
Selinger’s algorithm!



Heuristics for pruning plan space

• Apply predicates as early as possible
• Avoid plans with cross products
• Consider only left-deep join trees
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Join Trees
Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

(logical plan space)
• Several possible structure of the trees
• Each tree can have n! permutations of relations on leaves
(physical plan space)
• Different implementation and scanning of intermediate operators 

for each logical plan

R3 R2

R4
R1 R5

left-deep join tree
bushy join tree
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Why?



Selinger Algorithm

• Dynamic Programming based

• Dynamic Programming:
– General algorithmic paradigm
– Exploits “principle of optimality”

• Useful reading: Chapter 16, Introduction to Algorithms,
Cormen, Leiserson, Rivest

• Considers the search space of left-deep join trees
– reduces search space (only one structure)
– but still n! permutations
– interacts well with join algos (esp. NLJ)
– e.g. might not need to write tuples to disk if enough memory
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Principle of Optimality

Optimal for “whole” made up from 
optimal for “parts”
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Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

Suppose, 
this is an Optimal Plan
for joining R1…R5:
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Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

This has to be the 
optimal plan for joining R3, R2, R4, R1
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Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

This has to be the 
optimal plan for joining R3, R2, R4
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We are using the
associativity and 
commutativity of joins
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)
R ⨝ S = S ⨝ R



Exploiting Principle of Optimality

Query: R1        R2                …                 Rn

Both are giving the same result 
R2 ⨝ R3 ⨝ R1 = R3 ⨝ R1 ⨝ R2
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R3 R1R2 R3

Optimal
for joining R1, R2, R3

Sub-Optimal
for joining R1, R2, R3

R3 R1

R2

Ri

Rj
Leads to sub-Optimal
for joining R1,…,Rn

Suppose you chose
the sub-optimal one



Notation

OPT ( { R1, R2, R3 } ):

Cost of optimal plan to join R1,R2,R3

T ( { R1, R2, R3 } ): 

Number of tuples in R1       R2      R3
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Simple Cost Model

Cost (R         S)  =   T(R) + T(S) 

All other operators have 0 cost

Note: The simple cost model used for illustration only, 
it is not used in practice
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Cost Model Example

R S

T

X

T(R) + T(S)

T(X) + T(T)

Total Cost:  T(R) + T(S) + T(T) + T(X)
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OPT ( { R1, R2, R3 } ): 

OPT ( { R2, R3 } )   + T ( { R2, R3 } ) + T(R1)

OPT ( { R1, R2 } )   + T ( { R1, R2 } ) + T(R3)

OPT ( { R1, R3 } )   + T ( { R1, R3 } ) + T(R2)

Min

Selinger Algorithm:

Note: Valid only for the simple cost model
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R1, R2, R3, R4}?

Ans: First optimally join {R1, R3, R4} then join with R2 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R1, R3, R4}?

Ans: First optimally join {R1, R3}, then join with R4 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R1, R3}?

Ans: First optimally join {R3}, then join with R1 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R3}?

Ans: Single relation – so optimally scan R3.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

e.g. All possible permutations of R1, R3, R4 
have been considered

after OPT({R1, R3, R4}) has been computed
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R2

R3

R4

R1

Selinger Algorithm:

Final optimal plan:

Query: R1        R2         R3         R4

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan
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{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }



Query: R1        R2         R3         R4

Progress
of

algorithm

Selinger Algorithm:
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NOTE: 
This is *NOT* done by top-down recursive calls. 
• This is done BOTTOM-UP computing the optimal cost of *all* 

nodes in this lattice only once (dynamic programming).

Is it  efficient? J

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }



More on Query Optimizations
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• See the survey (on course website):
“An Overview of Query Optimization in Relational 
Systems” by Surajit Chaudhuri

• Covers other aspects like 
– Pushing group by before joins
– Merging views and nested queries
– “Semi-join”-like techniques for multi-block queries 

• covered later in distributed databases
– Statistics and optimizations
– Starbust and Volcano/Cascade architecture, etc


