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Announcements (Tues, 10/29)

• Today’s office hour by Yuchao: 4-5 pm, D309
– Sudeepa’s office hour Friday 3-4 pm, D325

• HW2-Part2 due on Thursday, 10/31
• Midterm project report due on Monday 11/4
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Where are we now?
We learnt
ü Relational Model and Query 

Languages
ü SQL, RA, RC
ü Postgres (DBMS)
§ HW1

ü Database Normalization
ü DBMS Internals

ü Storage
ü Indexing
ü Query Evaluation
ü Operator Algorithms
ü External sort
ü Query Optimization

ü Map-reduce and spark
§ HW2
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Next

• Transactions
– Basic concepts
– Concurrency control
– Recovery
– (for the next 4-5 

lectures)



Reading Material
• [RG]

– Chapter 16.1-16.3, 16.4.1
– 17.1-17.4
– 17.5.1, 17.5.3

4

Acknowledgement: 
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and  Dr. Gehrke.
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Motivation: Concurrent Execution

• Concurrent execution of user programs is essential for good 
DBMS performance.

– Disk accesses are frequent, and relatively slow
– it is important to keep the CPU busy by working on several user programs 

concurrently
– short transactions may finish early if interleaved with long ones
– may increase system throughput (avg. #transactions per unit time) and 

decrease response time (avg. time to complete a transaction)

• A user’s program may carry out many operations on the data 
retrieved from the database
– but the DBMS is only concerned about what data is read/written from/to 

the database
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Transactions

• A transaction is the DBMS’s abstract view of a user program
– a sequence of reads and write
– the same program executed multiple times would be considered as 

different transactions
– DBMS will enforce some Integrity Constraints (ICs), depending on the 

ICs declared in CREATE TABLE statements
– Beyond this, the DBMS does not really understand the semantics of 

the data.  (e.g., it does not understand how the interest on a bank 
account is computed)
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Example
• Consider two transactions:

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

• Intuitively, the first transaction is transferring $100 from B’s account 
to A’s account.  The second is crediting both accounts with a 6% 
interest payment

• There is no guarantee that T1 will execute before T2 or vice-versa, if 
both are submitted together.  

• However, the net effect must be equivalent to these two transactions 
running serially in some order
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Example

• Consider a possible interleaving (schedule):
T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B

v This is OK.  But what about:
T1: A=A+100,   B=B-100   
T2: A=1.06*A, B=1.06*B

v The DBMS’s view of the second schedule:
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

Duke CS, Fall 2019 CompSci 516: Database Systems 8



Commit and Abort

• A transaction might commit after completing 
all its actions

• or it could abort (or be aborted by the DBMS) 
after executing some actions
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T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END



ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability
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Atomicity

• A user can think of a transaction as always executing 
all its actions in one step, or not executing any actions 
at all

– Users do not have to worry about the effect of incomplete 
transactions

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END
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Consistency

• Each transaction, when run by itself with no concurrent 
execution of other actions, must preserve the consistency of 
the database
– e.g. if you transfer money from the savings account to the checking 

account, the total amount still remains the same

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END
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Isolation

• A user should be able to understand a transaction 
without considering the effect of any other concurrently 
running transaction
– even if the DBMS interleaves their actions
– transaction are “isolated or protected” from other transactions

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END
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Durability

• Once the DBMS informs the user that a 
transaction has been successfully completed, 
its effect should persist 
– even if the system crashes before all its changes are 

reflected on disk

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END
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Next, how we maintain all these four properties
But, in detail later



Ensuring Consistency

• e.g. Money debit and credit between accounts
• User’s responsibility to maintain the integrity constraints
• DBMS may not be able to catch such errors in user 

program’s logic
– e.g. if the credit is (debit – 1)

• However, the DBMS may be in inconsistent state “during 
a transaction” between actions
– which is ok, but it should leave the database at a consistent 

state when it commits or aborts

• Database consistency follows from transaction 
consistency, isolation, and atomicity
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Ensuring Isolation

• DBMS guarantees isolation  (later, how)
• If T1 and T2 are executed concurrently, either the 

effect would be T1->T2 or T2->T1 (and from a 
consistent state to a consistent state)

• But DBMS provides no guarantee on which of these 
order is chosen

• Often ensured by “locks” but there are other 
methods too
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Ensuring Atomicity

• Transactions can be incomplete due to several 
reasons
– Aborted (terminated) by the DBMS because of 

some anomalies during execution
• in that case automatically restarted and executed anew

– The system may crash (say no power supply)
– A transaction may decide to abort itself 

encountering an unexpected situation
• e.g. read an unexpected data value or unable to access 

disks
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Ensuring Atomicity

• A transaction interrupted in the middle can leave the 
database in an inconsistent state

• DBMS has to remove the effects of partial 
transactions from the database

• DBMS ensures atomicity by “undoing” the actions of 
incomplete transactions

• DBMS maintains a “log” of all changes to do so
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Ensuring Durability

• The log also ensures durability
• If the system crashes before the changes made by a 

completed transactions are written to the disk, the 
log is used to remember and restore these changes 
when the system restarts

• “recovery manager” will be discussed later 
– takes care of atomicity and durability
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Notations

• Transaction is a list of “actions” to the DBMS
– includes “reads” and “writes”
– RT(O): Reading an object O by transaction T
– WT(O): Writing an object O by transaction T
– also should specify CommitT (CT) and AbortT (AT)
– T is omitted if the transaction is clear from the 

context
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T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END



Assumptions

• Transactions communicate only through READ 
and WRITE
– i.e. no exchange of message among them

• A database is a “fixed” collection of independent 
objects
– i.e. objects are not added to or deleted from the 

database
– this assumption can be relaxed

• (dynamic db/phantom problem later)
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Schedule

• An actual or potential sequence for executing 
actions as seen by the DBMS

• A list of actions from a set of transactions
– includes READ, WRITE, ABORT, COMMIT

• Two actions from the same transaction T 
MUST appear in the schedule in the same 
order that they appear in T
– cannot reorder actions from a given transaction
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Serial Schedule

• If the actions of different 
transactions are not 
interleaved
– transactions are executed 

from start to finish one by 
one
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T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT



Problems with a serial schedule
• The same motivation for concurrent executions, e.g.

– while one transaction is waiting for page I/O from disk, another 
transaction could use the CPU

– reduces the time disks and processors are idle

• Decreases system throughput
– average #transactions computed in a given time

• Also affects response time
– average time taken to complete a transaction
– if we relax it, short transactions can be completed with long ones and 

do not have to wait for them to finish
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Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions 
of different transactions

• Equivalent schedules:  For any database state, the effect (on 
the set of objects in the database) of executing the first 
schedule is identical to the effect of executing the second 
schedule

• Serializable schedule:  A schedule that is equivalent to some 
serial execution of the committed transactions
– Note: If each transaction preserves consistency, every serializable 

schedule preserves consistency
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Serializable Schedule
• If the effect on any consistent database instance is guaranteed to be identical to 

that of “some” complete serial schedule for a set of “committed transactions”
• However, no guarantee on T1-> T2 or T2 -> T1
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T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

COMMIT

COMMIT

serial schedule serializable schedules

T1 T2

R(A)

W(A)

R(A)

R(B)

W(B)

W(A)

R(B)

W(B)

COMMIT

COMMIT



Anomalies with Interleaved Execution

• If two consistency-preserving transactions when 
run interleaved on a consistent database might 
leave it in inconsistent state

• Write-Read (WR)
• Read-Write (RW)
• Write-Write (WW)

• No conflict with “RR” if no write is involved
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WR Conflict

• Reading Uncommitted Data (WR Conflicts, “dirty reads”):
– transaction T2 reads an object that has been modified by T1 but 

not yet committed
– or T2 reads an object from an inconsistent database state (like 

fund is being transferred between two accounts by T1 while T2 
adds interests to both)

T1: R(A), W(A),   R(B), W(B), Abort
T2: R(A), W(A), Commit

T1: R(A), W(A),   R(B), W(B), Commit
T2: R(A), W(A), R(B), W(B), Commit
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RW Conflict

• Unrepeatable Reads (RW Conflicts):
– T2 changes the value of an object A that has been 

read by transaction T1, which is still in progress
– If T1 tries to read A again, it will get a different 

result
– Suppose two customers are trying to buy the last 

copy of a book simultaneously

T1: R(A),  R(A), W(A), C
T2: R(A), W(A), C
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WW conflict

• Overwriting Uncommitted Data (WW Conflicts, 
“lost update”):
– T2 overwrites the value of A, which has been 

modified by T1, still in progress
– Suppose we need the salaries of two employees (A 

and B) to be the same 
• T1 sets them to $1000
• T2 sets them to $2000

T1: W(A),  W(B), C
T2: W(A), W(B), C
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Schedules with Aborts

• Actions of aborted transactions have to be undone 
completely
– may be impossible in some situations

• say T2 reads the fund from an account and adds interest
• T1 aims to deposit money but aborts

– if T2 has not committed, we can “cascade aborts” by 
aborting T2 as well

– if T2 has committed, we have an “unrecoverable 
schedule”

T1: R(A), W(A),  Abort
T2: R(A), W(A) Commit
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Recoverable Schedule

• Transaction commits if and only after all 
transactions they read have committed
– avoids cascading aborts
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T1: R(A), W(A),  Abort
T2: R(A), W(A), R(B), W(B), Commit

Example of 
Unrecoverable schedule



Conflict Equivalent Schedules

• Two schedules are conflict equivalent if:
– Involve the same actions of the same transactions
– Every pair of conflicting actions of two committed 

transactions is ordered the same way

• Conflicting actions:
– both by the same transaction Ti

• Ri(X), Wi(Y)
– both on the same object by two transactions Ti and Tj, at least 

one action is a write
• Ri(X), Wj(X)
• Wi(X), Rj(X)
• Wi(X), Wj(X)
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Conflict Equivalent Schedules

• Two conflict equivalent schedules have the 
same effect on a database
– all pairs of conflicting actions are in same order
– one schedule can be obtained from the other by 

swapping “non-conflicting” actions
• either on two different objects
• or both are read on the same object
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Conflict Serializable Schedules

• Schedule S is conflict serializable if S is conflict 
equivalent to some serial schedule

• In class:
• r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)
• to
• r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)
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Conflict Serializable Schedules

• Schedule S is conflict serializable if S is conflict 
equivalent to some serial schedule

• In class:
• r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)
• to
• r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)
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Precedence Graph
• Also called dependency graph, conflict graph, or serializability graph  
• One node per committed transaction
• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s

actions
– Wi(A) --- Rj(A), or     Ri(A) --- Wj(A), or    Wi(A) --- Wj(A)

• Ti must precede Tj in any serial schedule
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• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The output of T1 depends on T2, and 
vice-versa.

T1 T2

A

B

Precedence graph

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)



Conflict Serializability

• Schedule is conflict serializable if and only if its 
precedence graph is acyclic

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

T1 T2

A

B

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

T1 T2

A, B
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Lock-Based Concurrency Control

• DBMS should ensure that only serializable and recoverable 
schedules are allowed 
– No actions of committed transactions are lost while undoing aborted 

transactions

• Uses a locking protocol

• Lock: a bookkeeping object associated with each “object”
– different granularity

• Locking protocol:
– a set of rules to be followed by each transaction
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Strict two-phase locking (Strict 2PL)

Two rules
1. Each transaction must obtain 

– a S (shared) lock on object before reading
– and an X (exclusive) lock on object before writing
– exclusive locks also allow reading an object, additional shared 

lock is not required
– If a transaction holds an X lock on an object, no other 

transaction can get a lock (S or X) on that object
– transaction is suspended until it acquires the required lock

2. All locks held by a transaction are released when the 
transaction completes
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Example: Strict 2PL

• WR conflict (dirty read)
• Strict 2PL does not allow this

Duke CS, Fall 2019 CompSci 516: Database Systems 41

T1: R(A), W(A),   R(B), W(B), Commit
T2: R(A), W(A), R(B), W(B), Commit

T1: X(A), R(A), W(A),   
T2: HAS TO WAIT FOR LOCK ON A

T1: X(A), R(A), W(A), X(B), R(B), W(B), C   
T2: X(A), R(A), W(A), X(B), R(B), W(B), C 

All locks released here
Can use UX(A), UX(B) – for shared lock unlocking, 

US(A),US(B)



Example: Strict 2PL

• Strict 2PL allows interleaving 
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T1: S(A), R(A), X(C), R(C), W(C), C   
T2: S(A), R(A), X(B), R(B), W(B), C 



More on Strict 2PL

• Every transaction has 
– a growing phase of acquiring locks, and
– a shrinking phase of releasing locks

• Strict 2PL allows only serializable schedules
– precedence graphs will be acyclic (check yourself)
– Also, allows recoverable schedules and simplifies transaction aborts
– two transactions can acquire locks on different objects independently
– But there may be “serializable”  schedules that are NOT “conflict 

serializable”
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T1: R(A) W(A) C
T2: W(A) C
T3: W(A) C

T1: R(A),W(A) C
T2: W(A) C
T3: W(A) C

S1 (not conflict serializable) ≣ S2 (serial)



2PL vs. strict 2PL
• 2PL:

– first, acquire all locks, release none
– second, release locks, cannot acquire any other lock

• Strict 2PL:
– release write (X) lock, only after it has ended (committed or aborted)

• (Non-strict) 2PL also allows only serializable schedules like 
strict 2PL, but involves more complex abort processing
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Lock Management

• Lock and unlock requests are handled by the lock manager
• Lock table entry:

– Number of transactions currently holding a lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests (if the shared or exclusive lock 

cannot be granted immediately)

• Locking and unlocking have to be atomic operations
• Lock upgrade: transaction that holds a shared lock can be 

upgraded to hold an exclusive lock
• Transaction commits or aborts

– all locks released
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Deadlocks

• Deadlock: Cycle of transactions waiting for 
locks to be released by each other
– database systems periodically check for deadlocks

• Two ways of dealing with deadlocks:
– Deadlock detection
– Deadlock prevention
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Deadlock Detection

1. Create a waits-for graph: (example on next slide)
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph
• Abort a transaction on a cycle and release its locks, proceed 

with the other transactions
– several choices, e.g., with fewest locks  that has done the least work
– if being repeatedly restarted, should be favored at some point

2. Use timeout, if long delay, assume (pessimistically) a 
deadlock
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Deadlock Detection

T1 T2

T4 T3

T1 T2

T3 T3

Example:

T1:  S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)
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Deadlock Prevention

• Assign priorities based on timestamps
• Assume Ti wants a lock that Tj holds. Two policies are possible:

– Wait-Die: It Ti has higher priority, Ti waits for Tj; otherwise Ti aborts
– Wound-wait: If Ti has higher priority, Tj aborts; otherwise Ti waits

• Convince yourself that no cycle is possible
• If a transaction re-starts, make sure it has its original timestamp

– each transaction will be the oldest one and have the highest priority at 
some point

• A variant of strict 2PL, conservative 2PL, works too
– acquire all locks it ever needs before a transaction starts
– no deadlock but high overhead and poor performance, so not used in 

practice
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Summary
• Transaction

– R1(A), W2(A), ….
– Commit C1, abort A1
– Lock/unlock: S1(A), X1(A), US1(A), UX1(A)

• ACID properties
– what they mean, whose responsibility to maintain each of them

• Conflicts: RW, WR, WW

• 2PL/Strict 2PL
– all lock acquires have to precede all lock releases
– Strict 2PL: release X locks only after commit or abort
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Summary
• Schedule

– Serial schedule
– Serializable schedule (why do we need them?)
– Conflicting actions
– Conflict-equivalent schedules
– Conflict-serializable schedule
– Recoverable schedules
– Cascade delete

• Dependency (or Precedence) graphs
– their relation to conflict serializability (by acyclicity)
– their relation to Strict 2PL
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Summary
• Lock management basics
• Deadlocks

– detection
• waits-for graph has cycle, or timeout
• what to do if deadlock is detected

– prevention
• wait-die and wound-wait
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