
CompSci 516
Database Systems

Lecture 17
Intro to Transactions

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements (Tues, 10/29)

• Today’s office hour by Yuchao: 4-5 pm, D309
– Sudeepa’s office hour Friday 3-4 pm, D325

• HW2-Part2 due on Thursday, 10/31
• Midterm project report due on Monday 11/4

Duke CS, Fall 2019 CompSci 516: Database Systems 2

Where are we now?
We learnt
ü Relational Model and Query

Languages
ü SQL, RA, RC
ü Postgres (DBMS)
§ HW1

ü Database Normalization
ü DBMS Internals

ü Storage
ü Indexing
ü Query Evaluation
ü Operator Algorithms
ü External sort
ü Query Optimization

ü Map-reduce and spark
§ HW2

Duke CS, Fall 2019 CompSci 516: Database Systems 3

Next

• Transactions
– Basic concepts
– Concurrency control
– Recovery
– (for the next 4-5

lectures)

Reading Material
• [RG]

– Chapter 16.1-16.3, 16.4.1
– 17.1-17.4
– 17.5.1, 17.5.3

4

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Fall 2019 CompSci 516: Database Systems

Motivation: Concurrent Execution

• Concurrent execution of user programs is essential for good
DBMS performance.

– Disk accesses are frequent, and relatively slow
– it is important to keep the CPU busy by working on several user programs

concurrently
– short transactions may finish early if interleaved with long ones
– may increase system throughput (avg. #transactions per unit time) and

decrease response time (avg. time to complete a transaction)

• A user’s program may carry out many operations on the data
retrieved from the database
– but the DBMS is only concerned about what data is read/written from/to

the database

Duke CS, Fall 2019 CompSci 516: Database Systems 5

Transactions

• A transaction is the DBMS’s abstract view of a user program
– a sequence of reads and write
– the same program executed multiple times would be considered as

different transactions
– DBMS will enforce some Integrity Constraints (ICs), depending on the

ICs declared in CREATE TABLE statements
– Beyond this, the DBMS does not really understand the semantics of

the data. (e.g., it does not understand how the interest on a bank
account is computed)

Duke CS, Fall 2019 CompSci 516: Database Systems 6

Example
• Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• Intuitively, the first transaction is transferring $100 from B’s account
to A’s account. The second is crediting both accounts with a 6%
interest payment

• There is no guarantee that T1 will execute before T2 or vice-versa, if
both are submitted together.

• However, the net effect must be equivalent to these two transactions
running serially in some order

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Example

• Consider a possible interleaving (schedule):
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v This is OK. But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v The DBMS’s view of the second schedule:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Duke CS, Fall 2019 CompSci 516: Database Systems 8

Commit and Abort

• A transaction might commit after completing
all its actions

• or it could abort (or be aborted by the DBMS)
after executing some actions

Duke CS, Fall 2019 CompSci 516: Database Systems 9

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability

Duke CS, Fall 2019 CompSci 516: Database Systems 10

Atomicity

• A user can think of a transaction as always executing
all its actions in one step, or not executing any actions
at all

– Users do not have to worry about the effect of incomplete
transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Consistency

• Each transaction, when run by itself with no concurrent
execution of other actions, must preserve the consistency of
the database
– e.g. if you transfer money from the savings account to the checking

account, the total amount still remains the same

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Isolation

• A user should be able to understand a transaction
without considering the effect of any other concurrently
running transaction
– even if the DBMS interleaves their actions
– transaction are “isolated or protected” from other transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Duke CS, Fall 2019 CompSci 516: Database Systems 13

Durability

• Once the DBMS informs the user that a
transaction has been successfully completed,
its effect should persist
– even if the system crashes before all its changes are

reflected on disk

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Duke CS, Fall 2019 CompSci 516: Database Systems 14

Next, how we maintain all these four properties
But, in detail later

Ensuring Consistency

• e.g. Money debit and credit between accounts
• User’s responsibility to maintain the integrity constraints
• DBMS may not be able to catch such errors in user

program’s logic
– e.g. if the credit is (debit – 1)

• However, the DBMS may be in inconsistent state “during
a transaction” between actions
– which is ok, but it should leave the database at a consistent

state when it commits or aborts

• Database consistency follows from transaction
consistency, isolation, and atomicity

Duke CS, Fall 2019 CompSci 516: Database Systems 15

Ensuring Isolation

• DBMS guarantees isolation (later, how)
• If T1 and T2 are executed concurrently, either the

effect would be T1->T2 or T2->T1 (and from a
consistent state to a consistent state)

• But DBMS provides no guarantee on which of these
order is chosen

• Often ensured by “locks” but there are other
methods too

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Ensuring Atomicity

• Transactions can be incomplete due to several
reasons
– Aborted (terminated) by the DBMS because of

some anomalies during execution
• in that case automatically restarted and executed anew

– The system may crash (say no power supply)
– A transaction may decide to abort itself

encountering an unexpected situation
• e.g. read an unexpected data value or unable to access

disks

Duke CS, Fall 2019 CompSci 516: Database Systems 17

Ensuring Atomicity

• A transaction interrupted in the middle can leave the
database in an inconsistent state

• DBMS has to remove the effects of partial
transactions from the database

• DBMS ensures atomicity by “undoing” the actions of
incomplete transactions

• DBMS maintains a “log” of all changes to do so

Duke CS, Fall 2019 CompSci 516: Database Systems 18

Ensuring Durability

• The log also ensures durability
• If the system crashes before the changes made by a

completed transactions are written to the disk, the
log is used to remember and restore these changes
when the system restarts

• “recovery manager” will be discussed later
– takes care of atomicity and durability

Duke CS, Fall 2019 CompSci 516: Database Systems 19

Notations

• Transaction is a list of “actions” to the DBMS
– includes “reads” and “writes”
– RT(O): Reading an object O by transaction T
– WT(O): Writing an object O by transaction T
– also should specify CommitT (CT) and AbortT (AT)
– T is omitted if the transaction is clear from the

context

Duke CS, Fall 2019 CompSci 516: Database Systems 20

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Assumptions

• Transactions communicate only through READ
and WRITE
– i.e. no exchange of message among them

• A database is a “fixed” collection of independent
objects
– i.e. objects are not added to or deleted from the

database
– this assumption can be relaxed

• (dynamic db/phantom problem later)

Duke CS, Fall 2019 CompSci 516: Database Systems 21

Schedule

• An actual or potential sequence for executing
actions as seen by the DBMS

• A list of actions from a set of transactions
– includes READ, WRITE, ABORT, COMMIT

• Two actions from the same transaction T
MUST appear in the schedule in the same
order that they appear in T
– cannot reorder actions from a given transaction

Duke CS, Fall 2019 CompSci 516: Database Systems 22

Serial Schedule

• If the actions of different
transactions are not
interleaved
– transactions are executed

from start to finish one by
one

Duke CS, Fall 2019 CompSci 516: Database Systems 23

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

Problems with a serial schedule
• The same motivation for concurrent executions, e.g.

– while one transaction is waiting for page I/O from disk, another
transaction could use the CPU

– reduces the time disks and processors are idle

• Decreases system throughput
– average #transactions computed in a given time

• Also affects response time
– average time taken to complete a transaction
– if we relax it, short transactions can be completed with long ones and

do not have to wait for them to finish

Duke CS, Fall 2019 CompSci 516: Database Systems 24

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions
of different transactions

• Equivalent schedules: For any database state, the effect (on
the set of objects in the database) of executing the first
schedule is identical to the effect of executing the second
schedule

• Serializable schedule: A schedule that is equivalent to some
serial execution of the committed transactions
– Note: If each transaction preserves consistency, every serializable

schedule preserves consistency

Duke CS, Fall 2019 CompSci 516: Database Systems 25

Serializable Schedule
• If the effect on any consistent database instance is guaranteed to be identical to

that of “some” complete serial schedule for a set of “committed transactions”
• However, no guarantee on T1-> T2 or T2 -> T1

Duke CS, Fall 2019 CompSci 516: Database Systems 26

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

COMMIT

COMMIT

serial schedule serializable schedules

T1 T2

R(A)

W(A)

R(A)

R(B)

W(B)

W(A)

R(B)

W(B)

COMMIT

COMMIT

Anomalies with Interleaved Execution

• If two consistency-preserving transactions when
run interleaved on a consistent database might
leave it in inconsistent state

• Write-Read (WR)
• Read-Write (RW)
• Write-Write (WW)

• No conflict with “RR” if no write is involved

Duke CS, Fall 2019 CompSci 516: Database Systems 27

WR Conflict

• Reading Uncommitted Data (WR Conflicts, “dirty reads”):
– transaction T2 reads an object that has been modified by T1 but

not yet committed
– or T2 reads an object from an inconsistent database state (like

fund is being transferred between two accounts by T1 while T2
adds interests to both)

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), Commit

T1: R(A), W(A), R(B), W(B), Commit
T2: R(A), W(A), R(B), W(B), Commit

Duke CS, Fall 2019 CompSci 516: Database Systems 28

RW Conflict

• Unrepeatable Reads (RW Conflicts):
– T2 changes the value of an object A that has been

read by transaction T1, which is still in progress
– If T1 tries to read A again, it will get a different

result
– Suppose two customers are trying to buy the last

copy of a book simultaneously

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Duke CS, Fall 2019 CompSci 516: Database Systems 29

WW conflict

• Overwriting Uncommitted Data (WW Conflicts,
“lost update”):
– T2 overwrites the value of A, which has been

modified by T1, still in progress
– Suppose we need the salaries of two employees (A

and B) to be the same
• T1 sets them to $1000
• T2 sets them to $2000

T1: W(A), W(B), C
T2: W(A), W(B), C

Duke CS, Fall 2019 CompSci 516: Database Systems 30

Schedules with Aborts

• Actions of aborted transactions have to be undone
completely
– may be impossible in some situations

• say T2 reads the fund from an account and adds interest
• T1 aims to deposit money but aborts

– if T2 has not committed, we can “cascade aborts” by
aborting T2 as well

– if T2 has committed, we have an “unrecoverable
schedule”

T1: R(A), W(A), Abort
T2: R(A), W(A) Commit

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Recoverable Schedule

• Transaction commits if and only after all
transactions they read have committed
– avoids cascading aborts

Duke CS, Fall 2019 CompSci 516: Database Systems 32

T1: R(A), W(A), Abort
T2: R(A), W(A), R(B), W(B), Commit

Example of
Unrecoverable schedule

Conflict Equivalent Schedules

• Two schedules are conflict equivalent if:
– Involve the same actions of the same transactions
– Every pair of conflicting actions of two committed

transactions is ordered the same way

• Conflicting actions:
– both by the same transaction Ti

• Ri(X), Wi(Y)
– both on the same object by two transactions Ti and Tj, at least

one action is a write
• Ri(X), Wj(X)
• Wi(X), Rj(X)
• Wi(X), Wj(X)

Duke CS, Fall 2019 CompSci 516: Database Systems 33

Conflict Equivalent Schedules

• Two conflict equivalent schedules have the
same effect on a database
– all pairs of conflicting actions are in same order
– one schedule can be obtained from the other by

swapping “non-conflicting” actions
• either on two different objects
• or both are read on the same object

Duke CS, Fall 2019 CompSci 516: Database Systems 34

Conflict Serializable Schedules

• Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

• In class:
• r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)
• to
• r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

Duke CS, Fall 2019 CompSci 516: Database Systems 35

Conflict Serializable Schedules

• Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

• In class:
• r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)
• to
• r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

Duke CS, Fall 2019 CompSci 516: Database Systems 36

Precedence Graph
• Also called dependency graph, conflict graph, or serializability graph
• One node per committed transaction
• Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s

actions
– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

• Ti must precede Tj in any serial schedule

Duke CS, Fall 2019 CompSci 516: Database Systems 37

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The output of T1 depends on T2, and
vice-versa.

T1 T2

A

B

Precedence graph

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

Conflict Serializability

• Schedule is conflict serializable if and only if its
precedence graph is acyclic

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B), R1(B), W1(B)

T1 T2

A

B

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

T1 T2

A, B

Duke CS, Fall 2019 CompSci 516: Database Systems 38

Lock-Based Concurrency Control

• DBMS should ensure that only serializable and recoverable
schedules are allowed
– No actions of committed transactions are lost while undoing aborted

transactions

• Uses a locking protocol

• Lock: a bookkeeping object associated with each “object”
– different granularity

• Locking protocol:
– a set of rules to be followed by each transaction

Duke CS, Fall 2019 CompSci 516: Database Systems 39

Strict two-phase locking (Strict 2PL)

Two rules
1. Each transaction must obtain

– a S (shared) lock on object before reading
– and an X (exclusive) lock on object before writing
– exclusive locks also allow reading an object, additional shared

lock is not required
– If a transaction holds an X lock on an object, no other

transaction can get a lock (S or X) on that object
– transaction is suspended until it acquires the required lock

2. All locks held by a transaction are released when the
transaction completes

Duke CS, Fall 2019 CompSci 516: Database Systems 40

Example: Strict 2PL

• WR conflict (dirty read)
• Strict 2PL does not allow this

Duke CS, Fall 2019 CompSci 516: Database Systems 41

T1: R(A), W(A), R(B), W(B), Commit
T2: R(A), W(A), R(B), W(B), Commit

T1: X(A), R(A), W(A),
T2: HAS TO WAIT FOR LOCK ON A

T1: X(A), R(A), W(A), X(B), R(B), W(B), C
T2: X(A), R(A), W(A), X(B), R(B), W(B), C

All locks released here
Can use UX(A), UX(B) – for shared lock unlocking,

US(A),US(B)

Example: Strict 2PL

• Strict 2PL allows interleaving

Duke CS, Fall 2019 CompSci 516: Database Systems 42

T1: S(A), R(A), X(C), R(C), W(C), C
T2: S(A), R(A), X(B), R(B), W(B), C

More on Strict 2PL

• Every transaction has
– a growing phase of acquiring locks, and
– a shrinking phase of releasing locks

• Strict 2PL allows only serializable schedules
– precedence graphs will be acyclic (check yourself)
– Also, allows recoverable schedules and simplifies transaction aborts
– two transactions can acquire locks on different objects independently
– But there may be “serializable” schedules that are NOT “conflict

serializable”

Duke CS, Fall 2019 CompSci 516: Database Systems 43

T1: R(A) W(A) C
T2: W(A) C
T3: W(A) C

T1: R(A),W(A) C
T2: W(A) C
T3: W(A) C

S1 (not conflict serializable) ≣ S2 (serial)

2PL vs. strict 2PL
• 2PL:

– first, acquire all locks, release none
– second, release locks, cannot acquire any other lock

• Strict 2PL:
– release write (X) lock, only after it has ended (committed or aborted)

• (Non-strict) 2PL also allows only serializable schedules like
strict 2PL, but involves more complex abort processing

Duke CS, Fall 2019 CompSci 516: Database Systems 44

Lock Management

• Lock and unlock requests are handled by the lock manager
• Lock table entry:

– Number of transactions currently holding a lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests (if the shared or exclusive lock

cannot be granted immediately)

• Locking and unlocking have to be atomic operations
• Lock upgrade: transaction that holds a shared lock can be

upgraded to hold an exclusive lock
• Transaction commits or aborts

– all locks released

Duke CS, Fall 2019 CompSci 516: Database Systems 45

Deadlocks

• Deadlock: Cycle of transactions waiting for
locks to be released by each other
– database systems periodically check for deadlocks

• Two ways of dealing with deadlocks:
– Deadlock detection
– Deadlock prevention

Duke CS, Fall 2019 CompSci 516: Database Systems 46

Deadlock Detection

1. Create a waits-for graph: (example on next slide)
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph
• Abort a transaction on a cycle and release its locks, proceed

with the other transactions
– several choices, e.g., with fewest locks that has done the least work
– if being repeatedly restarted, should be favored at some point

2. Use timeout, if long delay, assume (pessimistically) a
deadlock

Duke CS, Fall 2019 CompSci 516: Database Systems 47

Deadlock Detection

T1 T2

T4 T3

T1 T2

T3 T3

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

Duke CS, Fall 2019 CompSci 516: Database Systems 48

Deadlock Prevention

• Assign priorities based on timestamps
• Assume Ti wants a lock that Tj holds. Two policies are possible:

– Wait-Die: It Ti has higher priority, Ti waits for Tj; otherwise Ti aborts
– Wound-wait: If Ti has higher priority, Tj aborts; otherwise Ti waits

• Convince yourself that no cycle is possible
• If a transaction re-starts, make sure it has its original timestamp

– each transaction will be the oldest one and have the highest priority at
some point

• A variant of strict 2PL, conservative 2PL, works too
– acquire all locks it ever needs before a transaction starts
– no deadlock but high overhead and poor performance, so not used in

practice

Duke CS, Fall 2019 CompSci 516: Database Systems 49

Summary
• Transaction

– R1(A), W2(A), ….
– Commit C1, abort A1
– Lock/unlock: S1(A), X1(A), US1(A), UX1(A)

• ACID properties
– what they mean, whose responsibility to maintain each of them

• Conflicts: RW, WR, WW

• 2PL/Strict 2PL
– all lock acquires have to precede all lock releases
– Strict 2PL: release X locks only after commit or abort

Duke CS, Fall 2019 CompSci 516: Database Systems 50

Summary
• Schedule

– Serial schedule
– Serializable schedule (why do we need them?)
– Conflicting actions
– Conflict-equivalent schedules
– Conflict-serializable schedule
– Recoverable schedules
– Cascade delete

• Dependency (or Precedence) graphs
– their relation to conflict serializability (by acyclicity)
– their relation to Strict 2PL

Duke CS, Fall 2019 CompSci 516: Database Systems 51

Summary
• Lock management basics
• Deadlocks

– detection
• waits-for graph has cycle, or timeout
• what to do if deadlock is detected

– prevention
• wait-die and wound-wait

Duke CS, Fall 2019 CompSci 516: Database Systems 52

