
CompSci 516
Database Systems

Lecture 19
Transactions

– Concurrency Control

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements (Thurs, 11/31)
• HW2 deadline extended to Monday, 11/4
• Project midterm report extended to Tuesday, 11/5
• Midterm grades and exams on gradescope and sakai

– Sample solution on sakai
– Contact us if you have questions

• Three extra OHs for HW2 (ask questions before weekend!)
– Tianrui, Thursday (today), 2:45 pm – 3:45pm, North 306
– Yuchao, Thursday (today), 4:00 pm - 5:00pm, D309
– Yuchao, Friday, 9:30 am - 10:30 am, D339

• OH By Sudeepa:
– Friday 3-4 pm, D325

2Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements (Tues 11/5)
• Midterm report due today 11/5 on gradescope
– One report per group

• Next week (11/12-11/14): HW3/MongoDB week!
– You will have two Mongo Labs
– 10% credit for HW3 in total (*not* part of 5% in-class lab

credit)
– You will have some simple tasks to finish before each lab
– Final submission date: Tuesday 11/19
– But try to finish as much as possible with TAs’ help in labs!

3Duke CS, Fall 2019 CompSci 516: Database Systems

Reading Material
• [RG]
– Chapter 17.5.1, 17.5.3, 17.6

• [GUW]
– Chapter 18.8, 18.9
– Today’s examples are from GUW (lecture slides will be sufficient for this class

and exams)

4

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Fall 2019 CompSci 516: Database Systems

Today’s topics

• Optimistic concurrency control (17.6.1)
• Timestamp-based concurrency control

(17.6.2)
• Multi-version concurrency control (17.6.3)
• Dynamic databases and Phantom problem

(17.5.1)
• Multiple—granularity locking (17.5.3)

Duke CS, Fall 2019 CompSci 516: Database Systems 5

Approaches to CC
other than locking

Duke CS, Fall 2019 CompSci 516: Database Systems 6

Approaches to
Concurrency Control (CC)

• Lock-based CC
– (so far)

• Optimistic CC
– today

• Time-stamp-based CC
– today

• Multi-version CC
– today

Duke CS, Fall 2019 CompSci 516: Database Systems 7

uses “timestamps” in some way

Timestamp

• Each transaction gets a unique timestamp

• e.g.
– system’s clock value when it is issued by the

scheduler (assume one transactions issued on one
tick of the clock)

– or a unique number given by a counter
(incremented after each transaction)

Duke CS, Fall 2019 CompSci 516: Database Systems 8

Locking is a “pessimistic or
conservative” approach to CC

• Locking is a conservative approach in which conflicts are
prevented

• Either uses “blocking” (delay) or abort
– note the several usages of a “block”!

• Disadvantages of locking:
– Lock management overhead
– Deadlock detection/resolution
– Lock contention for heavily used objects

• If only light contention for data objects, still the overhead
of following a locking protocol is paid

Duke CS, Fall 2019 CompSci 516: Database Systems 9

(1) Optimistic CC

Duke CS, Fall 2019 CompSci 516: Database Systems 10

Optimistic CC (or Kung-Robinson approach)

• If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before transactions
commit

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Optimistic CC
• Transactions have three phases:

1. READ (R): Read from the database, but make changes to ”private copies”
of objects (assume private workspace)

2. VALIDATE (V): When decide to commit, also check for conflicts with
concurrently executing transactions
• if a possible conflict, abort, clear private workspace, restart

3. WRITE (W): If no conflict, make local copies of changes public (copy them
into the database)

ROOT

old

new

modified
objects

Duke CS, Fall 2019 CompSci 516: Database Systems 12

What does Validation do?
• To validate T2 , for each committed transactions T1 such that

TS(T1) < TS(T2), one of the validation tests must be satisfied

• Validation ensures no RW, WR, WW conflicts, e.g.,
– T1 completes all R, V, W before T2 starts
– Or, T1 completes before W of T2 starts, and T2 does not read anything that T1 writes
– Or, T1 completes its R before T2 starts its R, and T2 does not read/write anything that

T1 writes

• Overhead:
– Some parts have to be in “critical section” without other transactions
– Need to maintain objects that are read/written by each transactions
– If validation fails, need to restart, lost work

Duke CS, Fall 2019 CompSci 516: Database Systems 13

R = READ V = Validation W = WRITE

Optimistic CC vs locking

• If there are few conflicts and validation is
efficient
– optimistic CC is better than locking

• If many conflicts
– cost of repeatedly restarting transactions hurts

performance significantly

Duke CS, Fall 2019 CompSci 516: Database Systems 14

(2) Timestamp-based CC

Duke CS, Fall 2019 CompSci 516: Database Systems 15

Timestamp CC
Main Idea:
• Give each object O

– a read-timestamp RT(O), and
– a write-timestamp WT(O)

• RG uses RTS/WTS, GUW uses RT/WT, either of these is fine
– a Commit bit C(O): whether the last transaction writing O has committed

• Give each transaction T
– a timestamp TS(T) when it begins

• If
– action ai of Ti conflicts with action aj of Tj,
– and TS(Ti) < TS(Tj)

• then
– ai must occur before aj

• Otherwise, abort and restart violating transaction

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Request for a read: RT(X)

1. If TS(T) >= WT(X)
– last written by a previous transaction –- OK (i.e. “physically

realizable”)
– If C(X) is true –- check if previous transaction has committed

• Grant the read request by T
• if TS(T) > RT(X)

– set RT(X) = TS(T)
– If C(X) is false

• Delay T until C(X) becomes true, or the transaction that wrote X aborts
2. If TS(T) < WT(X)
– write is not realizable -- already written by a later trans.
– Abort (or, Rollback) T --i.e. abort and restart with a larger

timestamp

Duke CS, Fall 2019 CompSci 516: Database Systems 17

See example first
And read yourself

Request for a write: WT(X)
1. If TS(T) >= RT(X) and TS(T) >= WT(X)

– last written/read by a previous transaction – OK
– Grant the write request by T

• write the new value of X
– Set WT(X) = TS(T)
– Set C(X) = false -- T not committed yet, set to true when T commits

2. If TS(T) >= RT(X) but TS(T)< WT(X)
– write is still realizable –-but already a later value in X
– If C(X) is true

• previous writer of X has committed
• simply ignore the write request by T
• but allow T to proceed without making changes to the database

– If C(X) is false
• Delay T until C(X) becomes true, or the transaction that wrote X aborts

• If TS(T) < RT(X)
– write is not realizable -- already read by a later transaction
– Abort (or, Rollback) T

Duke CS, Fall 2019 CompSci 516: Database Systems 18

See example first
And read yourself

Example

• Three transactions T1 (TS = 200), T2 (TS = 150), T3 (TS = 175)

• Three objects A, B, D
– initially all have RT = WT = 0, C = 1 (i.e. true)

• Sequence of actions
– R1(B), R2(A), R3(D), W1(B), W1(A), W2(D), W3(A)

• Q. What is the state of the database at the end if the
timestamp-based CC protocol is followed
– i.e. report the RT, WT, C

Duke CS, Fall 2019 CompSci 516: Database Systems 19

Example from GUW book

Initial condition and Steps

Duke CS, Fall 2019 CompSci 516: Database Systems 20

Step T1 T2 T3 A B D

200 150 175 RT = 0,
WT = 0,

C = 1

RT = 0,
WT = 0,

C = 1

RT = 0,
WT = 0,

C = 1

1 R1(B)

2 R2(A)

3 R3(D)

4 W1(B)

5 W1(A)

6 W2(D)

7 W3(A)

After Step 1

Duke CS, Fall 2019 CompSci 516: Database Systems 21

Step T1 T2 T3 A B D

200 150 175 RT = 0,
WT = 0,

C = 1

RT = 200,
WT = 0,

C = 1

RT = 0,
WT = 0,

C = 1

1 R1(B) RT=200

2 R2(A)

3 R3(D)

4 W1(B)

5 W1(A)

6 W2(D)

7 W3(A)

WT of B is <= TS(T1)
C = 1
Read OK.

After Step 2

Duke CS, Fall 2019 CompSci 516: Database Systems 22

Step T1 T2 T3 A B D

200 150 175 RT = 150,
WT = 0,

C = 1

RT = 200,
WT = 0,

C = 1

RT = 0,
WT = 0,

C = 1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(D)

4 W1(B)

5 W1(A)

6 W2(D)

7 W3(A)

WT of A is <= TS(T2)
C = 1
Read OK.

After Step 3

Duke CS, Fall 2019 CompSci 516: Database Systems 23

Step T1 T2 T3 A B D

200 150 175 RT = 150,
WT = 0,

C = 1

RT = 200,
WT = 0,

C = 1

RT = 175,
WT = 0,

C = 1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(D) RT=175

4 W1(B)

5 W1(A)

6 W2(D)

7 W3(A)

WT of D is <= TS(T3)
C = 1
Read OK.

After Step 4

Duke CS, Fall 2019 CompSci 516: Database Systems 24

Step T1 T2 T3 A B D

200 150 175 RT = 150,
WT = 0,

C = 1

RT = 200,
WT = 200

C = 0

RT = 175,
WT = 0,

C = 1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(D) RT=175

4 W1(B) WT=200
C=0

5 W1(A)

6 W2(D)

7 W3(A)

WT & RT of B is <= TS(T1)
Write OK.

After Step 5

Duke CS, Fall 2019 CompSci 516: Database Systems 25

Step T1 T2 T3 A B D

200 150 175 RT = 150
WT = 200

C = 0

RT = 200
WT = 200

C = 0

RT = 175
WT = 0
C = 1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(D) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(D)

7 W3(A)

RT & WT of A <= TS(T1)
Write ok.

Note the change in C bit
as T1 has not committed yet

After Step 6

Duke CS, Fall 2019 CompSci 516: Database Systems 26

Step T1 T2 T3 A B D

200 150 175 RT = 150
WT = 200

C = 0

RT = 200
WT = 200

C = 0

RT = 175
WT = 0
C = 1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(D) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(D)
Abort

7 W3(A)

RT(D) = 175 < 150 = TS(T2)
Abort T2

Object D has been read by
a later transaction - abort

After Step 7

Duke CS, Fall 2019 CompSci 516: Database Systems 27

Step T1 T2 T3 A B D

200 150 175 RT = 150
WT = 200

C = 0

RT = 200
WT = 200

C = 0

RT = 175
WT = 0
C = 1

1 R1(B) RT=200

2 R2(A) RT=150

3 R3(D) RT=175

4 W1(B) WT=200
C=0

5 W1(A) WT=200
C=0

6 W2(D)
Abort

7 W3(A)
Delay

RT(A) <= TS(T3) – write ok
WT(A) > TS(T3) and C(A) = 0
Delay T3

Delay until T1 commits or aborts

Thomas Write Rule
• If a write request comes from T on O, TS(T) < WT(O), and

TS(T) >= RT(O)
– violates timestamp order of T w.r.t. writer of O
– i.e. O has been written by a later transaction T2

Thomas Write Rule:
• If C(O) = true, we can safely ignore such outdated writes by T

– Otherwise ”delay/block” to check whether T2 commits eventually
• no need to restart T

– T’s write is effectively followed by another write with no intervening
reads

• Allows some serializable, but not conflict serializable
schedules

Duke CS, Fall 2019 CompSci 516: Database Systems 28

(3) Multiversion CC

Duke CS, Fall 2019 CompSci 516: Database Systems 29

Another approach to CC

• Multiversion CC
– another way of using timestamps
– ensures that a transaction never has to be restarted (aborted) to read

an object
• unlike timestamp-based CC

• The idea is to make several copies of each DB object
– each copy of each object has a write timestamp

• Ti reads the most recent version whose timestamp precedes
TS(Ti)

Duke CS, Fall 2019 CompSci 516: Database Systems 30

Multiversion CC

• Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O
O’

O’’

MAIN
SEGMENT
(Current
versions of
DB objects)

VERSION
POOL
(Older versions that
may be useful for
some active readers.)

Readers are always allowed to proceed
– But may be “blocked“ until writer commits.

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Multiversion CC (Contd.)
• Each version of an object has
– its writer’s TS as its WT, and
– the timestamp of the transaction that most recently read this

version as its RT

• Versions are chained backward
– we can discard versions that are “too old to be of interest”

• Each transaction is classified as Reader or Writer.
– Writer may write some object; Reader never will
– Transaction declares whether it is a Reader when it begins

Duke CS, Fall 2019 CompSci 516: Database Systems 32

See example first
And read yourself

Reader Transaction
• For each object to be read:

– Finds newest version with WT < TS(T)
– Starts with current version in the main segment and chains

backward through earlier versions
– Update RT if necessary (i.e. if TS(T) > RT, then RT = TS(T))

• Assuming that some version of every object exists from the
beginning of time, Reader transactions are never restarted
– However, might block until writer of the appropriate version

commits

T

old new
WTS timeline

version that is read

Duke CS, Fall 2019 CompSci 516: Database Systems 33

See example first
And read yourself

Writer Transaction
• To read an object, follows reader protocol
• To write an object:

– must make sure that the object has not been read by a ”later” transaction
– Finds newest version V s.t. WT(V) <= TS(T).

• If RT(V) <= TS(T)
– T makes a copy CV of V, with a pointer to V,

with WT(CV) = TS(T), RT(CV) = TS(T)
– Write is buffered until T commits; other transactions can see TS values but

can’t read version CV
• Else

– reject write

Duke CS, Fall 2019 CompSci 516: Database Systems 34

See example first
And read yourself

Example

• Four transactions T1 (TS = 150), T2 (TS = 200), T3 (TS =
175), T4(TS = 225)

• One object A
– Initial version is A0

• Sequence of actions
– R1(A), W1(A), R2(A), W2(A), R3(A), R4(A)

• Q. What is the state of the database at the end if the
multiversion CC protocol is followed

Duke CS, Fall 2019 CompSci 516: Database Systems 35

Initial condition and Steps

Duke CS, Fall 2019 CompSci 516: Database Systems 36

Step T1 T2 T3 T4 A0

150 200 175 225 RT=0,
WT=0

1 R1(A)

2 W1(A)

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

A0 existed before the transactions started

After Step 1

Duke CS, Fall 2019 CompSci 516: Database Systems 37

Step T1 T2 T3 T4 A0

150 200 175 225 RT=0,
WT=0

1 R1(A) Read
RT = 150

2 W1(A)

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

A0 is the newest version with WT <= TS(T1)
Read A0

After Step 2

Duke CS, Fall 2019 CompSci 516: Database Systems 38

Step T1 T2 T3 T4 A0 A150

150 200 175 225 RT=150
WT=0

RT=150
WT=150

1 R1(A) Read
RT = 150

2 W1(A) Create
RT=150
WT=150

3 R2(A)

4 W2(A)

5 R3(A)

6 R4(A)

• A0 is the newest version with WT <= TS(T1)
• RT(A0) <= TS(T1)
• Create a new version A150
• Set its WT, RT to TS(T1) = 150 (A150 named accordingly)

After Step 3

Duke CS, Fall 2019 CompSci 516: Database Systems 39

Step T1 T2 T3 T4 A0 A150

150 200 175 225 RT=150
WT=0

RT=200
WT=150

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A)

5 R3(A)

6 R4(A)

• A150 is the newest version with WT <= TS(T2)
• Read A150
• Update RT

After Step 4

Duke CS, Fall 2019 CompSci 516: Database Systems 40

Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150
WT=0

RT=200
WT=150

RT=200
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A)

6 R4(A)

• A150 is the newest version with WT <= TS(T2)
• RT(A150) <= TS(T2)
• Create a new version A200
• Set its WT, RT to TS(T2) = 200 (A200 named accordingly)

After Step 5

Duke CS, Fall 2019 CompSci 516: Database Systems 41

Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150
WT=0

RT=200
WT=150

RT=200
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A) Read

6 R4(A)

• A150 is the newest version with WT <= TS(T3)
• Read A150

• DO NOT Update RT

After Step 6

Duke CS, Fall 2019 CompSci 516: Database Systems 42

Step T1 T2 T3 T4 A0 A150 A200

150 200 175 225 RT=150
WT=0

RT=200
WT=150

RT=225
WT=200

1 R1(A) Read

2 W1(A) Create
RT=150
WT=150

3 R2(A) Read
RT=200

4 W2(A) Create
RT=200
WT=200

5 R3(A) Read

6 R4(A) Read
RT=225

• A200 is the newest version with WT <= TS(T4)
• Read A200

• Update RT

Dynamic Database
and Phantom Problem

Duke CS, Fall 2019 CompSci 516: Database Systems 43

Dynamic Databases
• If we relax the assumption that the DB is a fixed

collection of objects

• Then even Strict 2PL will not assure
serializability

• causes ”Phantom Problem” in dynamic
databases

Duke CS, Fall 2019 CompSci 516: Database Systems 44

Example: Phantom Problem
• T1 wants to find oldest sailors in rating levels 1 and 2

– Suppose the oldest at rating 1 has age 71
– Suppose the oldest at rating 2 has age 80
– Suppose the second oldest at rating 2 has age 63

• Another transaction T2 intervenes:
– Step 1: T1 locks all pages containing sailor records with rating = 1, and finds oldest

sailor (age = 71)
– Step 2: Next, T2 inserts a new sailor onto a new page (rating = 1, age = 96)
– Step 3: T2 locks pages with rating = 2, deletes oldest sailor with rating = 2 (age = 80),

commits, releases all locks
– Step 4: T1 now locks all pages with rating = 2, and finds oldest sailor (age = 63)

• No consistent DB state where T1 is “correct”
– T1 found oldest sailor with rating = 1 before modification by T2
– T1 found oldest sailor with rating = 2 after modification by T2

Duke CS, Fall 2019 CompSci 516: Database Systems 45

Sailors(sid, name, age, rating)

S4, Bob, 71, 1

S7, Mary, 80, 2
S3, Alice, 63, 2

S5, Ken, 96, 1 New by T2

Removed by T2

What was the problem?
• Conflict serializability guarantees serializability only if the set

of objects is fixed
– T1 implicitly and incorrectly assumed that it has locked the set of all

sailor records with rating = 1

• Solution to Phantom Problem
– Index locking: Lock the index, no new rating = 1 records can be

inserted
– predicate locking: Lock on “predicate” (any condition) like “rating = 1”

– more flexible but more expensive than index locking

Duke CS, Fall 2019 CompSci 516: Database Systems 46

Multiple-granularity Locking

Duke CS, Fall 2019 CompSci 516: Database Systems 47

DB Objects may contain other objects

• A DB contains several files
• A file is a collection of pages
• A page is a collection of records/tuples

Duke CS, Fall 2019 CompSci 516: Database Systems 48

Tuples

Tables

Pages

Database

contains

Carefully choose lock granularity

• If a transaction needs most of the pages
– set a lock on the entire file, reduces locking

overhead

• If only a few pages are needed
– lock only those pages

• Need to efficiently ensure no conflicts
– e.g. a page should not be locked by T1 if T2

already holds the lock on the file

• Acquire “intention locks” on all the
ancestors before locking an item
– Conflicts with lock requests
– Unlock bottom-up (tuple-> pages->..)

Duke CS, Fall 2019 CompSci 516: Database Systems 49

Tuples

Tables

Pages

Database

contains

Unlock

Transaction in SQL
• SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED [;]
• BEGIN TRANSACTION
• <…. SQL STATEMENTS>
• COMMIT or ROLLBACK

• Four isolation levels : performance and serializability

Duke CS, Fall 2019 CompSci 516: Database Systems 50

Dirty Read Unrepeatable
Read

Phantom

READ UNCOMMITTED Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE READS No No Maybe

SERIALIZABLE No No No

Summary
• Note the key ideas for three timestamp-based alternative

approaches (to Lock-based approaches) to CC
– Optimistic: validation tests
– Timestamp: RT(O) & WT(O) on each object O
– Multiversion: multiple versions of each object O with different WT and

RT

• Note: a new action (block or delay) in addition to commit or
abort

• “Phantom Problem” and why serializability/2PL fails
• New requirements and mechanisms for multiple-granularity

locks

Duke CS, Fall 2019 CompSci 516: Database Systems 51

