
CompSci 516
Database Systems

Lecture 20 and 23
Transactions –

Recovery

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements (Tues 11/7)
• Do not miss both of next week’s classes!
• Next week (11/12-11/14): HW3/MongoDB week!

– You will have two Mongo Labs
– 10% credit for HW3 in total (not part of 5% in-class lab

credit)
– You will have some simple tasks to finish before each lab
– Final submission date: Tuesday 11/19
– But try to finish as much as possible with TAs’ help in lab!

• And earn extra credit if you complete J

• Instructions will be posted on Piazza

2Duke CS, Fall 2019 CompSci 516: Database Systems

Reading Material
• [GUW]

– Chapter 17.2.1-17.2.4 (UNDO)
– Chapter 17.3.1-17.3.4 (REDO)
– 17.4: UNDO/REDO
– Lecture slides will be sufficient for exams

3

Acknowledgement:
A few of the following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Duke CS, Fall 2019 CompSci 516: Database Systems

Today

Recovery
• STEAL/ NO STEAL
• FORCE/NO FORCE
• UNDO log
• REDO log

Duke CS, Fall 2019 CompSci 516: Database Systems 4

Transaction Recovery
and
Logs

Duke CS, Fall 2019 CompSci 516: Database Systems 5

Review: The ACID properties

• A tomicity: All actions in the transaction happen, or none
happen.

• C onsistency: If each transaction is consistent, and the DB starts
consistent, it ends up consistent.

• I solation: Execution of one transaction is isolated from that of
other transactions.

• D urability: If a transaction commits, its effects persist.

• Which property did we cover in CC? : Isolation
• Now : Atomicity and Durability by recovery manager

Duke CS, Fall 2019 CompSci 516: Database Systems 6

Motivation: A & D

• Atomicity:
– Transactions may abort

(“Rollback”).
• Durability:

– What if DBMS stops running?
– (power failure/crash/error/fire-

flood etc.)

crash!

❖ Desired Behavior after system restarts:
– T1, T2 & T3 should be durable.
– T4 & T5 should be aborted (effects not seen).

T1
T2
T3
T4
T5

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Commit ≠ Disk Write!
Abort ≠ No Disk Write!

Eventually yes, but not necessarily immediately

Recovery: A & D

• Atomicity
– by ”undo”ing actions of “aborted transactions”

• Durability
– by making sure that all actions of committed

transactions survive crashes and system failure
– i.e. by “redo”-ing actions of “committed

transactions”

Duke CS, Fall 2019 CompSci 516: Database Systems 8

Assumptions

• Concurrency control is in effect

• Updates are happening “in place”.
– i.e. data is overwritten on (deleted from) the disk.

• Simple schemes to guarantee Atomicity &
Durability (next):
– NO STEAL
– FORCE

Duke CS, Fall 2019 CompSci 516: Database Systems 9

Handling the Buffer Pool
• Force every write to

disk?

• Steal buffer-pool
frames from
uncommitted
transactions?

Force

No Force

No Steal Steal

Trivial

Desired

Duke CS, Fall 2019 CompSci 516: Database Systems 10

Handling the Buffer Pool
• Force every write to

disk?
– Poor response time
– But provides durability

• Steal buffer-pool
frames from
uncommitted
transactions?
– If not, poor throughput
– If so, how can we

ensure atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Duke CS, Fall 2019 CompSci 516: Database Systems 11

What if we do “Steal” and “NO Force”
• STEAL (why enforcing Atomicity is hard)

– To steal frame F: Current page in F (say P) is written to
disk; some transaction holds lock on P

– What if the transaction with the lock on P aborts?
– Must remember the old value of P at steal time (to

support UNDOing the write to page P)

• NO FORCE (why enforcing Durability is hard)
– What if system crashes before a modified page is

written to disk?
– Write as little as possible, in a convenient place, at

commit time, to support REDOing modifications.

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Basic Idea: Logging
• Record REDO and UNDO information, for every

update, in a log
– Sequential writes to log (put it on a separate disk) –

append only
– Minimal info (diff) written to log, so multiple updates fit

in a single log page
– Log blocks are created and updated in the main memory

first, then written to disk

• Log: An ordered list of REDO/UNDO actions
– Log record may contain:

<Tr.ID, pageID, offset, length, old data, new data>

Duke CS, Fall 2019 CompSci 516: Database Systems 13

Different types of logs

• UNDO
• REDO
• UNDO/REDO

• ARIES
– an UNDO/REDO log implementation

Duke CS, Fall 2019 CompSci 516: Database Systems 14

GUW 17.2, 17.3, 17.4
(Lecture material will be sufficient for
HWs and Exams)

Will talk about this if we have time

UNDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 15

UNDO logging

• Make repair to the database by undoing the
effect of transactions that have not finished
– i.e. uncommitted transactions before a crash or

aborted transactions

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Types of UNDO log records
• <START T>: transaction T has begun

• <COMMIT T>: T has completed successfully, no more changes will
be made
– Note that seeing <COMMIT T> does not automatically ensure that changes

have been written to disk, has to be enforced by log manager

• <ABORT T>: transaction T could not complete successfully
– job of the transaction mgr to ensure that changes by T never appear on disk

or are cancelled

• <T, X, v>: update record for UNDO log
– T has changed object X, and its former value was v (to Undo write if needed)

Duke CS, Fall 2019 CompSci 516: Database Systems 17

UNDO logging rules

1. (U1) If T modifies X, then log record <T, X, v>
must be written to disk before the new value of
X is written to disk

– so that the update can be undone using v if there is a
crash

2. (U2) If T commits, <COMMIT T> must be written
to disk after all database elements changed by T
are written to disk

– but as soon thereafter as possible

Duke CS, Fall 2019 CompSci 516: Database Systems 18

Order of write to disk for UNDO log

• Summarizing two rules:
1. First, the log records indicating changed DB

elements should be written

2. Second, the changed values of the DB elements
should be written

3. Finally, the COMMIT log record should be written

Duke CS, Fall 2019 CompSci 516: Database Systems 19

for each element,
not as a group

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

20

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

21

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

22

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

23

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

24

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

25

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

26

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

27

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

28

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

29

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

30

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

8 8 <START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG

31

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

<COMMIT T>

FLUSH LOG

32

initially A = 8, B = 8 EXAMPLE: UNDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Recovery using
UNDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 33

• first simple (look at entire log)
• then “checkpointing” (no need to look at entire log)

Recovery with UNDO log
• Scan from the end

• If <COMMIT T> is found in log
– all changes by T have been written to disk – OK

• <START T> found but no <COMMIT T>
– some changes might be written, some not
– Changes by T on disk have to be UNDONE

• Recall rule 1:
– “If T modifies X, then log record <T, X, v> must be written to disk before

the new value of X is written to disk”
– v was previous value of X
– For each such change on disk, there will be a log record on disk as well
– Reset value of X to v in recovery

Duke CS, Fall 2019 CompSci 516: Database Systems 34

UNDO: order of writing to disk
1. <START T>
2. <T, A, 10> (old value 10)
3. A = 12 (new value 12)
4. <COMMIT T>

Recovery with UNDO log
• Travel backward

– scan the log from the end toward the start
• Remember whether you have seen <COMMIT T> or <ABORT T> for all T

• Suppose <T, X, v> is encountered

1. If <COMMIT T> has been seen, do nothing
– nothing to undo, new value already written

2. Otherwise,
a) T is incomplete or aborted
b) Change the value of X to v

3. If <ABORT T> not found
a) write <ABORT T>
b) flush the log
c) resume normal operation

Duke CS, Fall 2019 CompSci 516: Database Systems 35

UNDO: order of writing to disk
1. <START T>
2. <T, A, 10> (old value 10)
3. A = 12 (new value 12)
4. <COMMIT T>

Which one is a concern?
Committed Tr or Aborted Tr?

Action t Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

36

initially A = 8, B = 8

• Crash after final flush
• <COMMIT T> already on disks
• All log records by T are ignored by the recovery manager

Crash example 1

Duke CS, Fall 2019 CompSci 516: Database Systems

EXAMPLE: UNDO LOG

Action t Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

37

initially A = 8, B = 8

• Crash before final flush
• <COMMIT T> not on disk
• Go backward, first <T, B, 8> found, set B = 8 on disk

Crash example 2, Step 1

Duke CS, Fall 2019 CompSci 516: Database Systems

EXAMPLE: UNDO LOG

Action t Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

38

initially A = 8, B = 8

• Crash before final flush
• <COMMIT T> not on disk
• Go backward, first <T, B, 8> found, set B = 8 on disk
• Then <T, A, 8> is found, set A = 8 on disk

Crash example 2, Step 2

Duke CS, Fall 2019 CompSci 516: Database Systems

EXAMPLE: UNDO LOG

Action t Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

39

initially A = 8, B = 8

• Crash before final flush
• <COMMIT T> not on disk
• Go backward, first <T, B, 8> found, set B = 8 on disk
• Then <T, A, 8> is found, set A = 8 on disk
• <START T> found. Nothing else can be found in the log for T. Write <ABORT T>

Crash example 2, Step 3

Duke CS, Fall 2019 CompSci 516: Database Systems

EXAMPLE: UNDO LOG

Action t Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

40

initially A = 8, B = 8

• Crash before FIRST flush
• <T, A, 8>, <T, B, 8>, <COMMIT T> not on disk
• By rule U1, A and B not changed on disk - do nothing

Crash example 3

Duke CS, Fall 2019 CompSci 516: Database Systems

EXAMPLE: UNDO LOG

Action t Mem A Mem B Disk A Disk B Log
<START T>

READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>
READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
FLUSH LOG
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

<COMMIT T>
FLUSH LOG

41

initially A = 8, B = 8

• Crash before FIRST flush
• <T, A, 8>, <T, B, 8>, <COMMIT T> not on disk
• By rule U1, A and B not changed on disk - do nothing

Crash example 3

Duke CS, Fall 2019 CompSci 516: Database Systems

EXAMPLE: UNDO LOG

Does this UNDO method work
if T changes A twice?
A = 16
A = 24?

Checkpointing for UNDO log

Duke CS, Fall 2019 CompSci 516: Database Systems 42

Checkpointing Motivation
• So far, recovery requires every log record to be examined

• If we have seen <COMMIT T>, no need to examine log
records of T
– all changes already on disk

• Still, we may not be able to truncate log after one
transaction committed
– log records of other active transactions might be lost
– always need to scan until the start of the log

• Explicitly checkpoint the log periodically
– We can stop scanning the log after certain points

Duke CS, Fall 2019 CompSci 516: Database Systems 43

Checkpointing process

1. Stop accepting new transactions
2. Wait until all currently active transactions commit or abort,

and have written <COMMIT> or <ABORT> log record
3. Flush log to disk
4. Write a checkpointing log record <CKPT>, flush the log again
5. Resume accepting transactions

Duke CS, Fall 2019 CompSci 516: Database Systems 44

Recovery using Checkpointing
for UNDO log

Log records

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

<T2, C, 15>

<T1, D, 20>

<COMMIT T1>

<COMMIT T2>

<CKPT>

<START T3>

<T3, E, 25>

<T3, F, 30>

Duke CS, Fall 2019 CompSci 516: Database Systems 45

• Do not accept new transaction
• Finish T1, T2

– they committed

• Then write <CKPT> on log
• Then can accept new transaction

– Here T3

suppose,
want
to ckpt here

Recovery using Checkpointing
for UNDO log

Log records

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

<T2, C, 15>

<T1, D, 20>

<COMMIT T1>

<COMMIT T2>

<CKPT>

<START T3>

<T3, E, 25>

<T3, F, 30>

Duke CS, Fall 2019 CompSci 516: Database Systems 46

CRASH

• T3 is the only incomplete transaction
– Restore F to 30
– Restore E to 25
– in backward direction

• When we reach <CKPT>, we know that no
need to examine prior log records

• Restoration of the database is complete
– CKPT is the earliest (last) log record read by the

recovery manager

• Drawback: no transaction can be accepted
until all the active ones commit and CKPT
completes

suppose,
want
to ckpt here

Nonquiescent Checkpointing

• Avoids stalling the system and continues accepting new
transactions
– “quiescent” = in a state or period of inactivity or dormancy

1. Write <START CKPT(T1, …, Tk)> and flush the log
– T1, … Tk are active transactions (have not committed and have not

written their changes to disk)

2. Checkpointing continues until all of T1, .. Tk aborts or commits
– but do not prohibit other new transactions to start

3. When all of T1, …, Tk have completed, write <END CKPT> and
flush the log again

Duke CS, Fall 2019 CompSci 516: Database Systems 47

Example: Nonquiescent Checkpointing
for UNDO logLog records

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1, T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

<COMMIT T2>

<END CKPT>

<T3, F, 30>

Duke CS, Fall 2019 CompSci 516: Database Systems 48

• <START CKPT(T1, T2)>
– since T1, T2 are only active transactions at

that point
– <END CKPT> after both committed

• <START T3> during checkpointing

suppose,
want
to ckpt here

Recovery with Nonquiescent
Checkpointing for UNDO log

Duke CS, Fall 2019 CompSci 516: Database Systems 49

• Scan log from the end (as before)
– find all incomplete transaction as we go
– restore values for those transactions (undo)

• If <END CKPT> is met first
– all incomplete transactions started after <START CKPT ….>
– scan until that <START CKPT…> - can stop at that point
– can delete log records prior to <START CKPT..> once <END

CKPT> is written to disk

• If <START CKPT (T1,..,Tk)> is met first
– crash occurred during the checkpoint
– incomplete transactions =

• either started after <START CKPT..> (HERE T3)
• or among T1, …, Tk (HERE T1, T2)

– Scan backward
– until the earliest <START tr>

of all these transactions tr

UNDO: order of writing to disk
1. <START T>
2. <T, A, 10> (old value 10)
3. A = 12 (new value 12)
4. <COMMIT T>

Log records

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1, T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

<COMMIT T2>

<END CKPT>

<T3, F, 30>

Recovery with Nonquiescent
Checkpointing for UNDO logLog records

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1, T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

<COMMIT T2>

<END CKPT>

<T3, F, 30>

Duke CS, Fall 2019 CompSci 516: Database Systems 50

CRASH

• First <T3, F, 30> found
– restore F to 30 (undo change by T3)

• <END CKPT> found
– All incomplete transactions started after

corresponding <START CKPT..>

• <T3, E, 25> found
– restore E to 25 (undo change by T3)

• No other records to restore until
<START CKPT…>

• Stop there – no further changes

Recovery with Nonquiescent
Checkpointing for UNDO logLog records

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

<START CKPT(T1, T2)>

<T2, C, 15>

<START T3>

<T1, D, 20>

<COMMIT T1>

<T3, E, 25>

Duke CS, Fall 2019 CompSci 516: Database Systems 51

CRASH

• Scan backward
– no <END CKPT> found
– but <START CKPT(T1, T2)> found
– also <COMMIT T1> found

• T3 and T2 incomplete transactions
– T1 already committed

• Scan until the earliest of <START T2> and
<START T3>
– here <START T2>

• Along the way backward
– restore E to 25 (undo change by T3)
– restore C to 15 (undo change by T2)
– restore B to 10 (undo change by T2)
– in this order
– then stop at <START T2>

Lecture 21 –Logs Contd.

• Recap: UNDO log
• For any update by T of A from old value u to

new value v
– First <T, A, u> goes to disk then the new value v

goes to disk
• <Commit T> is written after all new values go

to disk
• Non-quiescent checkpointing for UNDO log

– On blackboard

Duke CS, Fall 2019 CompSci 516: Database Systems 52

Problems with UNDO logging

• We cannot commit T unless all its changes
appear on disk

• Sometimes disk I/Os can be saved if the
changes can stay in main memory for a while
– as long as there is a log to fix things in a crash

• Idea: REDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 53

UNDO: order of writing to disk
1. <START T>
2. <T, A, 10> (old value 10)
3. A = 12 (new value 12)
4. <COMMIT T>

REDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 54

Review: UNDO Log

• STEAL
– to be able to steal modified pages by a running transaction
– may have to UNDO for uncommitted transactions

• NO FORCE
– not to force every write of running transaction to disk
– may have to REDO for committed transactions

Duke CS, Fall 2019 CompSci 516: Database Systems 55

Considered by UNDO log
UNDO uncommitted transactions
Ignore committed transactions

Considered by REDO log
REDO committed transactions
Ignore uncommitted transactions

UNDO vs. REDO

UNDO REDO

cancels (UNDO) the effect of
incomplete transactions

ignores incomplete transactions

ignores committed ones repeats (REDO) the changes made by
committed ones

requires writing changed elements to disk
BEFORE the commit log record is written

requires writing changed elements to disk
AFTER the commit log record is written

<T, X, u>: u is OLD value of X <T, X v>: v is NEW value of X

Duke CS, Fall 2019 CompSci 516: Database Systems 56

Types of REDO log records
• <START T>

– transaction T has begun
• <COMMIT T>

– T has completed successfully, no more changes will be made
– Note that seeing <COMMIT T> does not automatically ensure that

changes have been written to disk
• has to be enforced by log manager

• <ABORT T>
– transaction T could not complete successfully
– job of the transaction mgr to ensure that changes by T never appear on

disk or are cancelled

• <T, X, v>
– update record for REDO log
– T has changed object X, and its NEW value is v

• NOTE: we only record the new value, not the old value (unlike UNDO)

Duke CS, Fall 2019 CompSci 516: Database Systems 57

same as UNDO

REDO logging rule

(R1) Before modifying any element X on disk, all
log records pertaining to this modification,
including <T, X, v> and <COMMIT T>, must
appear on disk

– single “redo rule”
– called the WRITE-AHEAD LOGGING (WAL) rule

Duke CS, Fall 2019 CompSci 516: Database Systems 58

Order of write to disk for REDO log

1. First, the log records indicating changed DB
elements should be written

2. Second, The COMMIT log record should be written

3. Finally, the changed DB elements should be written

Duke CS, Fall 2019 CompSci 516: Database Systems 59

different order
than UNDOUNDO: order of writing to disk

1. <START T>
2. <T, A, 10> (old value 10)
3. A = 12 (new value 12)
4. <COMMIT T>

REDO: order of writing to disk
1. <START T>
2. <T, A, 12> (new value 12)
3. <COMMIT T>
4. A = 12 (new value 12)

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T,B,16>
8 <COMMIT T>
9 FLUSH LOG

10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

60

initially A = 8, B = 8 EXAMPLE: REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B,16>
8 <COMMIT T>
9 FLUSH LOG

10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

61

initially A = 8, B = 8 EXAMPLE: REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Recovery using
REDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 62

Recovery with REDO log
• Identify committed transactions

– scan from the end to identify committed transactions
– make redo changes in the forward direction
– Recall: UNDO works in backward direction!

• For each log record <T, X, v>
– If T is not a committed transaction

• do nothing

– If T is committed
• write the value v of element X

• For each incomplete transaction T
– write <ABORT T>
– Flush the log

Duke CS, Fall 2019 CompSci 516: Database Systems 63

REDO: order of writing to disk
1. <START T>
2. <T, A, 12> (new value 12)
3. <COMMIT T>
4. A = 12 (new value 12)

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T,B,16>
8 COMMIT <COMMIT T>
9 FLUSH LOG

10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

64

initially A = 8, B = 8 EXAMPLE: REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

• Crash after step 9
• <COMMIT T> already on disk – T committed
• <T, A, 16> and <T, B, 16> - write values of A = 16 and B = 16
• Note: crash after step 10 or 11 ----some writes are redundant but harmless

Crash example 1

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T,B,16>
8 COMMIT <COMMIT T>
9 FLUSH LOG

10 OUTPUT(A) 16 16 16 16 8
11 OUTPUT(B) 16 16 16 16 16

65

initially A = 8, B = 8 EXAMPLE: REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

• Crash before step 9
• <COMMIT T> not on disk – T not committed – values not updated on disk
• No changes of A and B on disk
• Write <ABORT T> to log

Crash example 2

Checkpointing for REDO log

Duke CS, Fall 2019 CompSci 516: Database Systems 66

Checkpointing process

1. Write log record <START CKPT(T1, …, Tk)> where T1,…,Tk are
the active (uncommitted) transactions, and flush the log

2. Write to disk all db elements that were written to buffers but
not yet to disk by transactions that had already committed
before the <START CKPT> record was written to the log

3. Write a log record <END CKPT> to the log and flush the log

Unlike (nonquiescent checkpointing for) UNDO log, we can
complete the checkpointing for REDO without waiting for the
active transactions to commit or abort, as they are not writing to
disk during checkpointing anyway

Duke CS, Fall 2019 CompSci 516: Database Systems 67

A REDO log with checkpointing
Log records

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 68

• T2 is ongoing
• Only T2 in <START CKPT…>
• During checkpointing, write changes

by T1 to disk
– already committed before the

checkpointing started

• can accept new transactions while
checkpointing (T3 here)

Recovery: REDO log with checkpointing

Log records

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 69

• Find last ckpt <END CKPT> before crash

• every value written by committed transactions
before <START CKPT…> already on disk

– Here T1

• Limit recovery (like before) only for committed
transactions in <START CKPT…> or those that
started after <START CKPT…>
– Here T2 and T3
– <COMMIT T2> and <COMMIT T3> found after

<START CKPT..>
– both to be REdone

• No need to look further back than the earliest
of these <START Ti> records
– Here <START T2>CRASH

Recovery: REDO log with checkpointing

Log records

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 70

• <COMMIT T2> and <COMMIT T3>
found after <START CKPT..>
– both to be REdone

• REDO Update (in order)
– <T2, B, 10>: B = 10
– <T2, C, 15>: C = 15
– <T3, D , 20>: D = 20

• Note: update has to be in the forward
direction (redo log, unlike undo)

CRASH

Recovery: REDO log with checkpointing

Log records

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 71

• Example 1:

• Crash before <COMMIT T3>

• T3 has not committed

• No need to redo for <T3, D, 20>

Recovery: REDO log with checkpointing

Log records

<START T1>

<T1, A, 5>

<START T2>

<COMMIT T1>

<T2, B, 10>

<START CKPT(T2)>

<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 72

• Example 2:

• Crash before <END CKPT>

• Need to find last <END CKPT> and
then its <START CKPT…>
– Here no other <END CKPT>
– Scan until the start of the log

• Only <COMMIT T1> found
– Redo A = 5 for <T1, A, 5>

Pros and Cons
UNDO vs. REDO

UNDO REDO

requires data to be written to disk
immediately after a transaction finishes --

might increase the no. of disk I/Os that
need to be performed

(STEAL + FORCE)

requires us to keep all modified blocks in
buffers until the transaction commits and
the log records have been flushed – might

increase the average number of buffers
required by transactions
(NO STEAL + NO FORCE)

Duke CS, Fall 2019 CompSci 516: Database Systems 73

Also both may have conflicts during checkpointing with shared buffers
• suppose A in a page is changed by a committed tr but B is changed by a

uncommitted one
• ok if no shared buffers

Get benefits of both (STEAL + NO FORCE)– at the expense of maintaining more log
records

UNDO/REDO logging

UNDO/REDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 74

UNDO/REDO logging

• <T, X, v, w>
– T changed the value of element X
– former value v
– new value w

Duke CS, Fall 2019 CompSci 516: Database Systems 75

UNDO/REDO logging rule

(UR rule) Before modifying any element X on disk, <T, X,
v, w> must appear on disk

– Only constraint imposed by both UNDO and REDO log
– no constraint on <COMMIT T>

• can precede or follow any of the changes to the db elements on
disk

Duke CS, Fall 2019 CompSci 516: Database Systems 76

UNDO: order of writing to disk
1. <START T>
2. <T, A, 10> (old value 10)
3. A = 12 (new value 12)
4. <COMMIT T>

REDO: order of writing to disk
1. <START T>
2. <T, A, 12> (new value 12)
3. <COMMIT T>
4. A = 12 (new value 12)

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10
<COMMIT T>
FLUSH LOG

11 OUTPUT(B) 16 16 16 16 16

77

initially A = 8, B = 8 EXAMPLE: UNDO/REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10
<COMMIT T>
FLUSH LOG

11 OUTPUT(B) 16 16 16 16 16

78

initially A = 8, B = 8 EXAMPLE: UNDO/REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Step 10 (commit) could have also appeared
before Step (8), before Step (9), or after Step (11)

Recovery using
UNDO/REDO logging

Duke CS, Fall 2019 CompSci 516: Database Systems 79

Recovery with UNDO/REDO log
• REDO all committed transactions in the order earliest-

first (forward)
• UNDO all uncommitted/incomplete transactions in the

order latest first (backward)

• Important to do both
– because of the flexibility allowed by UNDO/REDO logging

regarding <COMMIT> records
• we can have

– a committed transaction with not all changes written to
disk

– an uncommitted transactions with some changes written
to disk

Duke CS, Fall 2019 CompSci 516: Database Systems 80

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10
<COMMIT T>
FLUSH LOG

11 OUTPUT(B) 16 16 16 16 16

81

initially A = 8, B = 8 EXAMPLE: UNDO/REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Crash example 1

• Crash after <COMMIT T > is flushed to disk
• T is considered as committed
• First update A to 16
• Then update B to 16 (forward direction)
• Some changes may be unnecessary but harmless

Action t Mem A Mem B Disk A Disk B Log
1 <START T>
2 READ(A,t) 8 8 8 8
3 t:=t*2 16 8 8 8
4 WRITE(A,t) 16 16 8 8 <T, A, 8,16>
5 READ(B,t) 8 16 8 8 8
6 t:=t*2 16 16 8 8 8
7 WRITE(B,t) 16 16 16 8 8 <T, B, 8,16>
8 FLUSH LOG
9 OUTPUT(A) 16 16 16 16 8

10
<COMMIT T>
FLUSH LOG

11 OUTPUT(B) 16 16 16 16 16

82

initially A = 8, B = 8 EXAMPLE: UNDO/REDO LOG

Duke CS, Fall 2019 CompSci 516: Database Systems

Crash example 1

• Crash before <COMMIT T > is flushed to disk
• T is considered as uncommitted
• First update B to 8
• Then update A to 8 (backward direction)
• Some changes may be unnecessary but harmless

Checkpointing for UNDO/REDO log

Duke CS, Fall 2019 CompSci 516: Database Systems 83

Checkpointing process

1. Write log record <START CKPT(T1, …, Tk)> where T1,…,Tk are
the active (uncommitted) transactions, and flush the log

– Same as UNDO and REDO!

2. Write to disk all records that are dirty
– i.e. contain one or more changed db elements
– NOTE: unlike REDO logging, flush all dirty buffers – not just those

written by committed transactions

3. Write a log record <END CKPT> to the log and flush the log

Duke CS, Fall 2019 CompSci 516: Database Systems 84

An UNDO/REDO log with checkpointing
Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 85

• T2 is active, T1 committed
• During CKPT:
• flush A to disk if it is not already there

(dirty buffer)
– Updated by “Committed T1”
– like REDO

• flush B to disk if it is not already there
(dirty buffer)
– Updated by “Uncommitted T2”
– unlike REDO

• Note: REDO ckpt only writes A not B

Recovery:
An UNDO/REDO log with checkpointing

Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 86

• END CKPT found
• T1 has committed and writes on disk

– ignore T1

• REDO T2 and T3 (both committed)
• For T2

– no need to look prior to <START CKPT(T2)>
– T2’s changes before START CKPT were

flushed to disk during CKPT
– unlike REDO

CRASH

Recovery:
An UNDO/REDO log with checkpointing

Log records

<START T1>

<T1, A, 4, 5>

<START T2>

<COMMIT T1>

<T2, B, 9, 10>

<START CKPT(T2)>

<T2, C, 14, 15>

<START T3>

<T3, D, 19, 20>

<END CKPT>

<COMMIT T2>

<COMMIT T3>

Duke CS, Fall 2019 CompSci 516: Database Systems 87

• END CKPT found
• T1 has committed and writes on disk

– ignore T1
• T2 committed, T3 uncommitted
• REDO T2 and UNDO T3
• For T2

– set C to 15
– not necessary to set B to 10 (before END

CKPT – already on disk)
• For T3

– set D to 19
– if T3 had started before START CKPT, would

have had to look before START CKPT for
more actions to be undone

Summary (read yourself!)
• UNDO logging

– <T, X, u>: u is the old value of X
– <T, X, u> to disk à X = new value to disk à … <COMMIT T> to disk
– undo uncommitted transactions

• REDO logging
– <T, X, v>: v is the new value of X
– <T, X, v> to disk à …. <COMMIT T> to disk à X = new value to disk …
– redo committed transactions

• UNDO/REDO logging
– <T, X, u, v>: u is the old value of X and v is the new value of X
– <T, X, u, v> to disk à X = new value to disk
– No constraints on writing <COMMIT T> to disk
– both: undo uncommitted and redo committed transactions

• Understand for each of these three
– standard recovery
– checkpointing, and
– recovery with checkpointing

Duke CS, Fall 2019 CompSci 516: Database Systems 88

A Glimpse of UNDO/REDO in practice

• ARIES: Developed at IBM, now used in many
DBMS

• UNDO/REDO logging
• While recovery:

– First run REDO for “all” transactions in forward
direction (repeat history for both committed and
uncommitted)

– Then run UNDO for “uncommitted” transactions
in backward direction

Duke CS, Fall 2019 CompSci 516: Database Systems 89

A Glimpse at ARIES Data Structures

90

(Details not covered in class)

P500
PageLSN= 103

P600
PageLSN= 102

P505
PageLSN= 104

P700
PageLSN= -

B = klm

pageID recoveryLSN

P500 101

P600 102

P505 104

LSN prevLS
N

tID pID Log entry Type undoNextLSN

101 - T1000 P500 Write A
“abc” -> “def”

Update -

102 - T2000 P600 Write B
“hij” -> “klm”

Update -

103 102 T2000 P500 Write D
“mnp” -> “qrs”

Update -

104 101 T1000 P505 Write C
“tuv” -> “wxy”

Update -

Dirty page table Log

transID lastLSN status

T1000 104 Running

T2000 103 Running

Transaction table

A = def D = qrs

E = pq

P500
PageLSN= -

P600
PageLSN= -

P505
PageLSN= -

P700
PageLSN= -

B = hij

Disk

A = abc D = mnp

C = tuv E = pq

Buffer Pool

90

