
CompSci 516
Database Systems

Lecture 25
Recursive Query Evaluation

and
Data Mining

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Recursive Query in Databases

Duke CS, Fall 2019 CompSci 516: Database Systems 2

3

http://xkcdsw.com/1105

Recursion!

Duke CS, Fall 2019 CompSci 516: Database Systems

A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
– 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is 𝑍’s ancestor and 𝑍 is 𝑌’s ancestor

4

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Bart Lisa

MargeHomer

Abe

Ape

Duke CS, Fall 2019 CompSci 516: Database Systems

Recursion in Databases
• Consider a graph G(V, E). Can you find out all “ancestor”

vertices that can reach “x” using Relational Algebra/Calculus?

• NO! – ANCESTOR cannot be defined using a constant-size
union of select-project-join queries (conjunctive queries)

• No RA/RC expressions can express ANCESTOR or
REACHABILITY (TRANSITIVE CLOSURE) (Aho-Ullman, 1979)

• A limitation of RA/RC in expressing recursive queries
• Solution: Use “Datalog” language and include recursion in SQL

– A long discussion in the DB community on whether recursion should
be supported

Duke CS, Fall 2019 CompSci 516: Database Systems 5

Recursion in SQL
• SQL2 had no recursion
– You can find Bart’s parents, grandparents, great

grandparents, etc.
SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

– But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
– WITH clause
– Implemented in PostgreSQL (common table expressions)
– SQL:1999 (SQL3) and later versions support “linear Datalog”

6Duke CS, Fall 2019 CompSci 516: Database Systems

base case

Ancestor query in SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
(
(SELECT parent, child FROM Parent)
UNION

(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

7

Query using
the relation
defined in
WITH clause

Define a
relation

recursively

recursion step

Duke CS, Fall 2019 CompSci 516: Database Systems

Finding ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

8

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape LisaDuke CS, Fall 2019 CompSci 516: Database Systems

Continue until no more new tuples
are generated – reaches a “fixpoint”

Q. Why should it
stop after finite
number of steps?

Fixed point of a query
• Fixed point of a function: value of x such that f(x) = x

– E.g. x = 0, 2 for f(x) = x2 – x

• A query 𝑞 is just a function that maps an input table to an output
table, so a fixed point of 𝑞 is a table 𝑇 such that 𝑞 𝑇 = 𝑇

To compute fixed point of 𝑞
• Start with an empty table: 𝑇 ← ∅

– Initiate all tables to ∅ for multiple recursive relations

• Evaluate 𝑞 over 𝑇
– In the i-th iteration, use *all* recursive tables from the previous i-1-th iteration
– If the result is identical to 𝑇, stop; 𝑇 is a fixed point
– Otherwise, let 𝑇 be the new result; repeat

• Starting from ∅ produces the unique minimal fixed point
(assuming 𝑞 is monotone)
– In the previous slide, think of the definition as Ancestor = 𝑞(Ancestor)

9Duke CS, Fall 2019 CompSci 516: Database Systems

Optional slide

Linear recursion

• With linear recursion, a recursive definition can make only one
reference to itself

• Non-linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
– WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

10Duke CS, Fall 2019 CompSci 516: Database Systems

Optional slide

More on recursion

• Negation+recursion is tricky!
– Need “stratification”

• Alternative Datalog format

• Ancestor(x, y) :- Parent(x, y)
• Ancestor(x, y) :- Ancestor(x, z), Parent(z, y)

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Comma “,” = Join on
the same variablesUnion: Two rules with

the same “head”

Optional slide

(A glimpse of)
Data Mining

Optional Reading Material

1. [RG]: Chapter 26

2. “Fast Algorithms for Mining Association Rules”
Agrawal and Srikant, VLDB 1994

25,426 citations on Google Scholar in November 2019!
• 23,863 in November 2018
• 23,038 in November 2017
• 20,610 in November 2016
• 19,496 in April 2016

One of the most cited papers in CS!

13

• Acknowledgement:
The following slides have been prepared adapting
the slides provided by the authors of [RG] and
using several presentations from the internet

Duke CS, Fall 2019 CompSci 516: Database Systems

Four Main Steps in KD and DM (KDD)

• Data Selection
– Identify target subset of data and attributes of interest

• Data Cleaning
– Remove noise and outliers, unify units, create new

fields, use denormalization if needed
• Data Mining
– extract interesting patterns

• Evaluation
– present the patterns to the end users in a suitable

form, e.g. through visualization

Duke CS, Fall 2019 CompSci 516: Database Systems 14

Several DM/KD (Research) Problems

• Discovery of causal rules
• Learning of logical definitions
• Fitting of functions to data
• Clustering
• Classification
• Inferring functional dependencies from data
• Finding “usefulness” or “interestingness” of a

rule

Duke CS, Fall 2019 CompSci 516: Database Systems 15

• Retailers collect and store massive amounts of
sales data
– transaction date and list of items

• Association rules:
– e.g. 98% customers who purchase “tires” and “auto

accessories” also get “automotive services” done
– Customers who buy mustard and ketchup also buy

burgers
– Goal: find these rules from just transactional data

(transaction id + list of items)

Mining Association Rules

16Duke CS, Fall 2019 CompSci 516: Database Systems

• Can be used for
– marketing program and strategies
– cross-marketing (mass e-mail, webpages)
– catalog design
– add-on sales
– store layout
– customer segmentation

Applications

17Duke CS, Fall 2019 CompSci 516: Database Systems

Notations

• Items I = {i1,i2,…,im}
• D : a set of transactions
• Each transaction T ⊆ I
– has an identifier TID

• Association Rule
– X à Y (not Functional Dependency!)

– X, Y ⊂ I
– X ∩ Y = ∅

18Duke CS, Fall 2019 CompSci 516: Database Systems

Confidence and Support

• Association rule XàY

• Confidence c = |Tr. with X and Y|/|Tr. with |X|
– c% of transactions in D that contain X also contain Y

• Support s = |Tr. with X and Y| / |all Tr.|
– s% of transactions in D contain X and Y.

19Duke CS, Fall 2019 CompSci 516: Database Systems

Support Example

TID Cereal Beer Bread Bananas Milk

1 X X X

2 X X X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X

• Support(Cereal)
• 4/8 = .5

• Support(Cereal à Milk)
• 3/8 = .375

20Duke CS, Fall 2019 CompSci 516: Database Systems

Confidence Example

TID Cereal Beer Bread Bananas Milk

1 X X X

2 X X X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X

• Confidence(Cereal à Milk)
• 3/4 = .75

• Confidence(Bananas à Bread)
• 1/3 = .33333…

21Duke CS, Fall 2019 CompSci 516: Database Systems

X à Y is not a Functional Dependency
For functional dependencies
• F.D. = two tuples with the same value of of X must have the

same value of Y
– X à Y => XZ à Y (concatenation)
– X à Y, Y à Z => X à Z (transitivity)

For association rules
• X à A does not mean XYàA

– May not have the minimum support
– Assume one transaction {AX}

• X à A and A à Z do not mean X à Z
– May not have the minimum confidence
– Assume two transactions {XA}, {AZ}

22Duke CS, Fall 2019 CompSci 516: Database Systems

Check yourself

Problem Definition

• Input
– a set of transactions D

• Can be in any form – a file, relational table, etc.

– min support (minsup)
– min confidence (minconf)

• Goal: generate all association rules that have
– support >= minsup and
– confidence >= minconf

23Duke CS, Fall 2019 CompSci 516: Database Systems

Decomposition into two subproblems

• 1. Apriori
– for finding “large” itemsets with support >= minsup
– all other itemsets are “small”

• 2. Then use another algorithm to find rules X à Y such that
– Both itemsets X ∪ Y and X are large
– X à Y has confidence >= minconf

• Paper focuses on subproblem 1
– if support is low, confidence may not say much
– subproblem 2 in full version of the paper

Duke CS, Fall 2019 CompSci 516: Database Systems 24

Basic Ideas - 1

• Q. Which itemset can possibly have larger
support: ABCD or AB
– i.e. when one is a subset of the other?

• Ans: AB
– any subset of a large itemset must be large
– So if AB is small, no need to investigate ABC, ABCD

etc.

Duke CS, Fall 2019 CompSci 516: Database Systems 25

Basic Ideas - 2

• Start with individual (singleton) items {A}, {B}, …

• In subsequent passes, extend the “large itemsets” of the previous pass as “seed”

• Generate new potentially large itemsets (candidate itemsets)
– E.g., if {AB} {AC} are two large itemsets of size 2, a candidate itemset for size 3 is {ABC}

(different last item in the otherwise same sequence)

• Then count their actual support from the data

• At the end of the pass, determine which of the candidate itemsets are actually
large
– becomes seed for the next pass

• Continue until no new large itemsets are found

Duke CS, Fall 2019 CompSci 516: Database Systems 26

Announcements

Duke CS, Fall 2019 CompSci 516: Database Systems 27

Annoucements (11/26, Tues)
• Final: 12/14 (Sat), 2-5 pm, in class
– Closed book/notes
– *Comprehensive*, but likely to have more emphasis on

material after midterm
• Please fill out course evaluations!
– Currently only 1/52 J (thanks to you who filled it out!)
– A very important step toward improving the class for the

future – the course is for you, so all feedback and
suggestions much appreciated for future offerings!

– Will take a few minutes on Dukehub but a huge favor to us –
we need your help!

– A small token of appreciation:
• 90% (>= 46) filled by the deadline, +4 bonus points in midterm to

the entire class
• 75% (>= 39) filled by the deadline, +2 bonus points in midterm to

the entire class
Duke CS, Fall 2019 CompSci 516: Database Systems 28

Annoucements (11/26, Tues)
• Please fill out course evaluations!
– Currently only 1/52 J (thanks to you who filled it out!)
– A very important step toward improving the class for

the future – the course is for you, so all feedback and
suggestions much appreciated for future offerings!

– Will take a few minutes on Dukehub but a huge favor to
us – we need your help!

– A small token of appreciation:
• 90% (>= 46) filled by the deadline, +4 bonus points in midterm

to the entire class
• 75% (>= 39) filled by the deadline, +2 bonus points in midterm

to the entire class

Duke CS, Fall 2019 CompSci 516: Database Systems 29

Announcements (11/26, Tues)
• Project slides (3 only) and report due on 12/11 (Wed)
– Google slide deck will be posted
– Everyone knows what every other group worked on and

their results!
– Project grading will be relative
– Feel free to add voiceover in notes/ audio (encouraged!)

• Offline 3-slide per project
– Tentative: Motivation/Problem (1), Your contributions (2)
– You present the current status of the project

• problem, example, your approach, future work
– Best to show plots/ screenshots/ results/ demo!
– Try to show the most interesting observation/findings in 3

slides

Duke CS, Fall 2019 CompSci 516: Database Systems 30

Summary!

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Take-Aways

• DBMS Basics

• DBMS Internals

• Overview of Research Areas

• Hands-on Experience in DB systems

Duke CS, Fall 2019 CompSci 516: Database Systems 32

DB Systems
• Traditional DBMS
– PostGres, SQL

• Large-scale Data Processing Systems
– Spark/Scala, AWS

• New DBMS/NOSQL
– MongoDB

• In addition
– XML, JSON, JDBC, Python/Java

Duke CS, Fall 2019 CompSci 516: Database Systems 33

DB Basics

• SQL
• RA/Logical Plans
• RC
• Recursion in SQL / Datalog
– Why we needed each of these languages

• Normal Forms

Duke CS, Fall 2019 CompSci 516: Database Systems 34

DB Internals and Algorithms

• Storage
• Indexing
• Operator Algorithms
– External Sort
– Join Algorithms

• Cost-based Query Optimization
• Transactions
– Concurrency Control
– Recovery

Duke CS, Fall 2019 CompSci 516: Database Systems 35

Large-scale Processing
and New Approaches

• Parallel DBMS
• Distributed DBMS
• Map Reduce
• NOSQL

• Hope some of you will further explore Database
Systems/Data Management/Data Analysis/Big
Data as a researcher or practitioner!

Duke CS, Fall 2019 CompSci 516: Database Systems 36

