
CompSci 516
Database Systems

Lecture 3
Data Model

+
More SQL

Instructor: Sudeepa Roy

1Duke CS, Fall 2019

Announcements
• If you are enrolled to the class, but
– have not received the email from Piazza, please

email me
– If you missed Thursday’s lab, please email me

• HW1 will be released this week

• Project ideas will be posted by next week

Duke CS, Fall 2019 2

Today’s topic
• Physical and Logical Data Independence
• Data Model and XML
• More SQL
– Aggregates (Group-by)!
– Creating/modifying relations/data
– Constraints

Duke CS, Fall 2019 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Physical and Logical Data
Independence

Duke CS, Fall 2019 4

What does a DBMS provide?

Duke CS, Fall 2019 5

Why use a DBMS?

1. Data Independence
– Application programs should not be exposed to the data

representation and storage
– DBMS provides an abstract view of the data

2. Efficient Data Access
– A DBMS utilizes a variety of sophisticated techniques to

store and retrieve data (from disk) efficiently

6Duke CS, Fall 2019

Why use a DBMS?

3. Data Integrity and Security
– DBMS enforces “integrity constraints” – e.g. check

whether total salary is less than the budget
– DBMS enforces “access controls” – whether salary

information can be accesses by a particular user

4. Data Administration
– Centralized professional data administration by

experienced users can manage data access, organize data
representation to minimize redundancy, and fine tune
the storage

7Duke CS, Fall 2019

Why use a DBMS?

5. Concurrent Access and Crash Recovery
– DBMS schedules concurrent accesses to the data such

that the users think that the data is being accessed by
only one user at a time

– DBMS protects data from system failures

6. Reduced Application Development Time
– Supports many functions that are common to a number

of applications accessing data
– Provides high-level interface
– Facilitates quick and robust application development

8Duke CS, Fall 2019

When NOT to use a DBMS?

• DBMS is optimized for certain kind of workloads and
manipulations

• There may be applications with tight real-time constraints or a
few well-defined critical operations

• Abstract view of the data provided by DBMS may not suffice

• To run complex, statistical/ML analytics on large datasets

9Duke CS, Fall 2019

Levels of Abstractions in a DBMS

• Physical schema
– Storage as files, row vs.

column store, indexes
– will discuss these in

later lectures

Duke CS, Fall 2019 10

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

Levels of Abstractions in a DBMS

• Logical/Conceptual schema
– describes the stored data in the

physical schema

• Decided by conceptual schema
design
– e.g. ER Diagram

• not covered in this course
– Normalization

• will be covered

Students(sid: string, name: string, login:
string, age: integer, gpa: real)

Duke CS, Fall 2019 11

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

Levels of Abstractions in a DBMS

• External schema
– different “views” of

the database to
different users (later)

• One physical and
logical schema but
there can be multiple
external schemas

Duke CS, Fall 2019 12

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

Data Independence

• Application programs are insulated from
changes in the way the data is structured and
stored

• A very important property of a DBMS

• Logical and Physical

Duke CS, Fall 2019 13

Logical Data Independence

• Users can be shielded from changes in the logical
structure of data

• e.g. Students:
Students(sid: string, name: string, login: string, age: integer, gpa: real)

• Divide into two relations
Students_public(sid: string, name: string, login: string)
Students_private(sid: string, age: integer, gpa: real)

• Still a “view” Students can be obtained using the above
new relations
– by “joining” them with sid

• A user who queries this view Students will get the same
answer as before

Duke CS, Fall 2019 14

Physical Data Independence

• The logical/conceptual schema insulates users
from changes in physical storage details
– how the data is stored on disk
– the file structure
– the choice of indexes

• The application remains unaltered
– But the performance may be affected by such

changes

Duke CS, Fall 2019 15

Data Model and XML
(an overview)

Duke CS, Fall 2019 16

Data Model

• Applications need to model some real world units
• Entities:
– Students, Departments, Courses, Faculty, Organization,

Employee, …

• Relationships:
– Course enrollments by students, Product sales by an

organization

• A data model is a collection of high-level data
description constructs that hide many low-level
storage details

17Duke CS, Fall 2019

Data Model

Can Specify:

1. Structure of the data
– like arrays or structs in a programming language
– but at a higher level (conceptual model)

2. Operations on the data
– unlike a programming language, not any operation can be performed
– allow limited sets of queries and modifications
– a strength, not a weakness!

3. Constraints on the data
– what the data can be
– e.g. a movie has exactly one title

18Duke CS, Fall 2019

Important Data Models

• Structured Data
• Semi-structured Data
• Unstructured Data

What are these?

19Duke CS, Fall 2019

Important Data Models

• Structured Data
– All elements have a fixed format
– Relational Model (table)

• Semi-structured Data
– Some structure but not fixed
– Hierarchically nested tagged-elements in tree structure
– XML

• Unstructured Data
– No structure
– text, image, audio, video

20Duke CS, Fall 2019

Semi-structured Data and XML

• XML: Extensible Markup Language

• Will not be covered in detail in class, but many datasets
available to download are in this form
– You will download the DBLP dataset in XML format and

transform into relational form (in HW1!)

• Data does not have a fixed schema
– “Attributes” are part of the data
– The data is “self-describing”
– Tree-structured

Duke CS, Fall 2019 21

XML: Example
<article mdate="2011-01-11” key="journals/acta/Saxena96">

<author>Sanjeev Saxena</author>
<title>Parallel Integer Sorting and Simulation Amongst CRCW

Models.</title>
<pages>607-619</pages>
<year>1996</year>
<volume>33</volume>
<journal>Acta Inf.</journal>
<number>7</number>
<url>db/journals/acta/acta33.html#Saxena96</url>
<ee>http://dx.doi.org/10.1007/BF03036466</ee>

</article>

Duke CS, Fall 2019 22

Attributes

Elements

Attribute vs. Elements

• Elements can be repeated and nested
• Attributes are unique and atomic

Duke CS, Fall 2019 23

XML vs. Relational Databases

+ Serves as a model suitable for integration of databases containing similar
data with different schemas

– e.g. try to integrate two student databases: S1(sid, name, gpa) and S2(sid, dept,
year)

– Many “nulls” if done in relational model, very easy in XML
• NULL = A keyword to denote missing or unknown values

+ Flexible – easy to change the schema and data

- Makes query processing more difficult

Which one is easier?
• XML (semi-structured) to relational (structured)
or
• relational (structured) to XML (semi-structured)?

Duke CS, Fall 2019 24

XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<publisher> McGraw Hill

</book>

What is a good relational schema?

Duke CS, Fall 2019 25

XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill</publisher>

</book>

Duke CS, Fall 2019 26

Title Publisher Author1 Author2

What if the paper
has a single author?

XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete Book</title>
<pubisher>Prentice Hall</publisher>

</book>

Duke CS, Fall 2019 27

Title Publisher Author1 Author2

Does not work

XML to Relational Model

Duke CS, Fall 2019 28

BookId Title Publisher

b1 Database
Management
Systems

McGraw
Hill

b2 Database
Systems – The
Complete
Book

Prentice
Hall

Book
BookId Author

b1 Ramakrishnan

b1 Gehrke

b2 Garcia-Molina

b2 Ullman

b2 Widom

BookAuthoredBy

XML to Relational Model

• Problem 2: Missing
attributes

<book>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill
<edition>Third</edition>

</book>
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete

Book</title>
<pubisher>Prentice Hall</publisher>

</book>

Duke CS, Fall 2019 29

BookI
d

Title Publisher Edition

b1 Database
Manageme
nt Systems

McGraw
Hill

Third

b2 Database
Systems –
The
Complete
Book

Prentice
Hall

null

Summary: Data Models

• Relational data model is the most standard for
database managements
– and is the main focus of this course

• Semi-structured model/XML is also used in practice –
you will use them in hw assignments

• Unstructured data (text/photo/video) is unavoidable,
but won’t be covered in this class

Duke CS, Fall 2019 30

Back to SQL!

Duke CS, Fall 2019 31

Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching
• Find triples (of ages of sailors and two fields defined by expressions)

for sailors
– whose names begin and end with B and contain at least three characters

• LIKE is used for string matching. `_’ stands for any one character
and `%’ stands for 0 or more arbitrary characters
– You will need these often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke CS, Fall 2019 32

Find sid’s of sailors who’ve reserved a red or a
green boat

• UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples
– can themselves be the result of

SQL queries

• If we replace OR by AND in the
first version, what do we get?

• Also available: EXCEPT (What
do we get if we replace UNION
by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find sid’s of sailors who’ve reserved
a red and a green boat

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find sid’s of sailors who’ve reserved
a red and a green boat

• INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.
– Included in the SQL/92

standard, but some systems
don’t support it

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Nested Queries

• A very powerful feature of SQL:
– a WHERE/FROM/HAVING clause can itself contain an SQL query

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries, think of a

nested loops evaluation
– For each Sailors tuple, check the qualification by computing the

subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke CS, Fall 2019 36

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN
• Illustrates why, in general, subquery must be re-

computed for each Sailors tuple

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Fall 2019 37

Find names of sailors who’ve reserved boat #103:

Nested Queries with Correlation

• If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103
– UNIQUE checks for duplicate tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Fall 2019 38

Find names of sailors who’ve reserved boat #103
at most once:

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE.
• Also available: op ANY, op ALL, op IN

– where op : >, <, =, <=, >=

• Find sailors whose rating is greater than that of some
sailor called Horatio
– similarly ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke CS, Fall 2019 39

Recall: Aggregate Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Motivation for Grouping

• So far, we’ve applied aggregate operators to all
(qualifying) tuples
– Sometimes, we want to apply them to each of several groups

of tuples

• Consider: Find the age of the youngest sailor for each
rating level
– In general, we don’t know how many rating levels exist, and

what the rating values for these levels are!
– Suppose we know that rating values go from 1 to 10; we can

write 10 queries that look like this (need to replace i by num):
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Duke CS, Fall 2019 41

Queries With GROUP BY and HAVING

• The target-list contains
– (i) attribute names
– (ii) terms with aggregate operations (e.g., MIN (S.age))

• The attribute list (i) must be a subset of grouping-list
– Intuitively, each answer tuple corresponds to a group, and these attributes

must have a single value per group
– Here a group is a set of tuples that have the same value for all attributes in

grouping-list

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Duke CS, Fall 2019 42

First go over the examples in the following slides
Then come back to this slide and study yourself

Conceptual Evaluation
• The cross-product of relation-list is computed
• Tuples that fail qualification are discarded
• `Unnecessary’ fields are deleted
• The remaining tuples are partitioned into groups by the value of

attributes in grouping-list
• The group-qualification is then applied to eliminate some groups
• Expressions in group-qualification must have a single value per

group
– In effect, an attribute in group-qualification that is not an argument of an

aggregate op also appears in grouping-list
– like “…GROUP BY bid, sid HAVING bid = 3”

• One answer tuple is generated per qualifying group
Duke CS, Fall 2019 43

First go over the examples in the following slides
Then come back to this slide and study yourself

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

Duke CS, Fall 2019 44

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke CS, Fall 2019 45

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke CS, Fall 2019 46

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 2: Apply WHERE clause

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Fall 2019 47

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 3: Apply GROUP BY according to the listed attributes

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Fall 2019 48

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) >
1

Step 4: Apply HAVING clause
The group-qualification is applied to eliminate some groups

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating minage
3 25.5
7 35.0
8 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Fall 2019 49

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 5: Apply SELECT clause
Apply the aggregate operator
At the end, one tuple per group

Nulls and Views in SQL

Duke CS, Fall 2019 50

Null Values
• Field values in a tuple are sometimes
– unknown, e.g., a rating has not been assigned, or
– inapplicable, e.g., no spouse’s name
– SQL provides a special value null for such situations.

Duke CS, Fall 2019 51

Standard Boolean 2-valued logic

• True = 1, False = 0
• Suppose X = 5

– (X < 100) AND (X >= 1) is T ∧ T = T
– (X > 100) OR (X >= 1) is F ∨ T = T
– (X > 100) AND (X >= 1) is F ∧ T = F
– NOT(X = 5) is ¬T = F

• Intuitively,
– T = 1, F = 0
– For V1, V2 ∈ {1, 0}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

Duke CS, Fall 2019 52

2-valued logic does not work for nulls

• Suppose rating = null, X = 5
• Is rating>8 true or false?
• What about AND, OR and NOT connectives?

– (rating > 8) AND (X = 5)?

• What if we have such a condition in the
WHERE clause?

Duke CS, Fall 2019 53

3-Valued Logic For Null

• TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)
– unknown is treated as 0.5

• Now you can apply rules from 2-valued logic!
– For V1, V2 ∈ {1, 0, 0.5}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

• Therefore,
– NOT UNKNOWN = UNKNOWN
– UNKNOWN OR TRUE = TRUE
– UNKNOWN AND TRUE = UNKNOWN
– UNKNOWN AND FALSE = FALSE
– UNKNOWN OR FALSE = UNKNOWN

Duke CS, Fall 2019 54

End of Lecture 3

