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Announcements
• If you are enrolled to the class, but 
– have not received the email from Piazza, please 

email me
– If you missed Thursday’s lab, please email me

• HW1 will be released this week

• Project ideas will be posted by next week
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Today’s topic
• Physical and Logical Data Independence
• Data  Model  and XML
• More SQL 
– Aggregates (Group-by)!
– Creating/modifying relations/data
– Constraints
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Physical and Logical Data 
Independence
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What  does a DBMS provide?
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Why use a DBMS?

1. Data Independence
– Application programs should not be exposed to the data 

representation and storage
– DBMS provides an abstract view of the data

2. Efficient Data Access
– A DBMS utilizes a variety of sophisticated techniques to 

store and retrieve data (from disk) efficiently
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Why use a DBMS?

3. Data Integrity and Security
– DBMS enforces “integrity constraints” – e.g.  check 

whether total salary is less than the budget
– DBMS enforces “access controls” – whether salary 

information can be accesses by a particular user

4. Data Administration
– Centralized professional data administration by 

experienced users can manage data access, organize data 
representation to minimize redundancy, and fine tune 
the storage
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Why use a DBMS?

5. Concurrent Access and Crash Recovery
– DBMS schedules concurrent accesses to the data such 

that the users think that the data is being accessed by 
only one user at a time

– DBMS protects data from system failures

6. Reduced Application Development Time
– Supports many functions that are common to a number 

of applications accessing data
– Provides high-level interface
– Facilitates quick and robust application development
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When NOT to use a DBMS?

• DBMS is optimized for certain kind of workloads and 
manipulations

• There may be applications with tight real-time constraints or a 
few well-defined critical operations

• Abstract view of the data provided by DBMS may not suffice

• To run complex, statistical/ML analytics on large datasets
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Levels of Abstractions in a DBMS

• Physical schema
– Storage as files, row vs. 

column store, indexes
– will discuss these in 

later lectures
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Levels of Abstractions in a DBMS

• Logical/Conceptual schema
– describes the stored data in the 

physical schema

• Decided by conceptual schema 
design
– e.g. ER Diagram

• not covered in this course
– Normalization

• will be covered

Students(sid: string, name: string, login: 
string, age: integer, gpa: real)
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Levels of Abstractions in a DBMS

• External schema
– different “views” of 

the database to 
different users (later)

• One physical and 
logical schema but 
there can be multiple 
external schemas
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Data Independence

• Application programs are insulated from 
changes in the way the data is structured and 
stored

• A very important property of a DBMS

• Logical and Physical
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Logical Data Independence

• Users can be shielded from changes in the logical 
structure of data

• e.g. Students:
Students(sid: string, name: string, login: string, age: integer, gpa: real)

• Divide into two relations
Students_public(sid: string, name: string, login: string)
Students_private(sid: string, age: integer, gpa: real)

• Still a “view” Students can be obtained using the above 
new relations
– by “joining” them with sid

• A user who queries this view Students will get the same 
answer as before 
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Physical Data Independence

• The logical/conceptual schema insulates users 
from changes in physical storage details
– how the data is stored on disk
– the file structure
– the choice of indexes

• The application remains unaltered
– But the performance may be affected by such 

changes
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Data Model and XML
(an overview)

Duke CS, Fall 2019 16



Data Model

• Applications need to model some real world units
• Entities: 
– Students, Departments, Courses, Faculty, Organization, 

Employee, …

• Relationships:
– Course enrollments by students, Product sales by an 

organization 

• A data model is a collection of high-level data 
description constructs that hide many low-level 
storage details
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Data Model

Can Specify:

1. Structure of the data
– like arrays or structs in a programming language
– but at a higher level (conceptual model)

2. Operations on the data
– unlike a programming language, not any operation can be performed
– allow limited sets of queries and modifications
– a strength, not a weakness!

3. Constraints on the data
– what the data can be
– e.g. a movie has exactly one title
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Important Data Models

• Structured Data
• Semi-structured Data
• Unstructured Data

What are these?
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Important Data Models

• Structured Data
– All elements have a fixed format
– Relational Model (table)

• Semi-structured Data
– Some structure but not fixed 
– Hierarchically nested tagged-elements in tree structure
– XML

• Unstructured Data
– No structure
– text, image, audio, video
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Semi-structured Data and XML

• XML: Extensible Markup Language

• Will not be covered in detail in class, but many datasets 
available to download are in this form
– You will download the DBLP dataset in XML format and 

transform into relational form (in HW1!)

• Data does not have a fixed schema 
– “Attributes” are part of the data
– The data is “self-describing”
– Tree-structured
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XML: Example
<article mdate="2011-01-11” key="journals/acta/Saxena96">

<author>Sanjeev Saxena</author>
<title>Parallel Integer Sorting and Simulation Amongst CRCW 

Models.</title>
<pages>607-619</pages>
<year>1996</year>
<volume>33</volume>
<journal>Acta Inf.</journal>
<number>7</number>
<url>db/journals/acta/acta33.html#Saxena96</url>
<ee>http://dx.doi.org/10.1007/BF03036466</ee>

</article>
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Attribute vs. Elements

• Elements can be repeated and nested
• Attributes are unique and atomic
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XML vs. Relational Databases

+ Serves as a model suitable for integration of databases containing similar 
data with different schemas

– e.g. try to integrate two student databases: S1(sid, name, gpa) and S2(sid, dept, 
year)

– Many “nulls” if done in relational model, very easy in XML
• NULL = A keyword to denote missing or unknown values

+ Flexible – easy to change the schema and data

- Makes query processing more difficult

Which one is easier?
• XML (semi-structured) to relational (structured)
or 
• relational (structured) to XML (semi-structured)?
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XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<publisher> McGraw Hill

</book>

What is a good relational schema?
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XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill</publisher>

</book>
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What if the paper
has a single author?



XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete Book</title>
<pubisher>Prentice Hall</publisher>

</book>
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Does not work



XML to Relational Model
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BookId Title Publisher

b1 Database 
Management 
Systems

McGraw
Hill

b2 Database 
Systems – The 
Complete 
Book

Prentice 
Hall

Book
BookId Author

b1 Ramakrishnan

b1 Gehrke

b2 Garcia-Molina

b2 Ullman

b2 Widom

BookAuthoredBy



XML to Relational Model

• Problem 2: Missing 
attributes

<book>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill
<edition>Third</edition>

</book>
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete 

Book</title>
<pubisher>Prentice Hall</publisher>

</book>
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BookI
d

Title Publisher Edition

b1 Database 
Manageme
nt Systems

McGraw
Hill

Third

b2 Database 
Systems –
The 
Complete 
Book

Prentice 
Hall

null



Summary: Data Models

• Relational data model is the most standard for 
database managements
– and is the main focus of this course

• Semi-structured model/XML is also used in practice –
you will use them in hw assignments

• Unstructured data (text/photo/video) is unavoidable, 
but won’t be covered in this class
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Back to SQL!
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Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching
• Find triples (of ages of sailors and two fields defined by expressions) 

for sailors 
– whose names begin and end with B and contain at least three characters

• LIKE is used for string matching. `_’ stands for any one character 
and `%’ stands for 0 or more arbitrary characters
– You will need these often

SELECT S.age,     age1=S.age-5,     2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’
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Find sid’s of sailors who’ve reserved a red or a 
green boat

• UNION: Can be used to 
compute the union of any 
two union-compatible sets of 
tuples
– can themselves be the result of 

SQL queries

• If we replace OR by AND in the 
first version, what do we get?

• Also available:  EXCEPT (What 
do we get if we replace UNION
by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)
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Find sid’s of sailors who’ve reserved 
a red and a green boat

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)
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Find sid’s of sailors who’ve reserved 
a red and a green boat

• INTERSECT: Can be used to 
compute the intersection of 
any two union-compatible 
sets of tuples. 
– Included in the SQL/92 

standard, but some systems 
don’t support it

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND  S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)
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Nested Queries

• A very powerful feature of SQL:  
– a WHERE/FROM/HAVING clause can itself contain an SQL query

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries, think of a 

nested loops evaluation
– For each Sailors tuple, check the qualification by computing the 

subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:
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Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)



Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN
• Illustrates why, in general, subquery must be re-

computed for each Sailors tuple  

SELECT S.sname
FROM Sailors S
WHERE   EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)
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Nested Queries with Correlation

• If UNIQUE is used, and * is replaced by R.bid, finds 
sailors with at most one reservation for boat #103
– UNIQUE checks for duplicate tuples

SELECT S.sname
FROM Sailors S
WHERE   UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)
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Find names of sailors who’ve reserved boat #103 
at most once:



More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE.
• Also available:  op ANY, op ALL,  op IN

– where op : >, <, =, <=, >=

• Find sailors whose rating is greater than that of some 
sailor called Horatio
– similarly ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)
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Recall: Aggregate Operators
COUNT (*)
COUNT ( [DISTINCT] A)
SUM ( [DISTINCT] A)
AVG ( [DISTINCT] A)
MAX (A)
MIN (A)

SELECT  AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT  COUNT (*)
FROM Sailors S

SELECT  AVG ( DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT  MAX(S2.rating)

FROM Sailors S2)

single column

SELECT  COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?
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Motivation for Grouping

• So far, we’ve applied aggregate operators to all 
(qualifying) tuples
– Sometimes, we want to apply them to each of several groups 

of tuples

• Consider:  Find the age of the youngest sailor for each 
rating level
– In general, we don’t know how many rating levels exist, and 

what the rating values for these levels are!
– Suppose we know that rating values go from 1 to 10; we can 

write 10 queries that look like this (need to replace i by num):
SELECT  MIN (S.age)
FROM  Sailors S
WHERE  S.rating = i

For i = 1, 2, ... , 10:
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Queries With GROUP BY and HAVING

• The target-list contains
– (i) attribute names  
– (ii) terms with aggregate operations (e.g., MIN (S.age))

• The attribute list (i) must be a subset of grouping-list
– Intuitively, each answer tuple corresponds to a group, and these attributes 

must have a single value per group
– Here a group is a set of tuples that have the same value for all attributes in 

grouping-list

SELECT        [DISTINCT]  target-list
FROM relation-list
WHERE        qualification
GROUP BY grouping-list
HAVING      group-qualification
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Conceptual Evaluation
• The cross-product of relation-list is computed
• Tuples that fail qualification are discarded
• `Unnecessary’ fields are deleted
• The remaining tuples are partitioned into groups by the value of 

attributes in grouping-list
• The group-qualification is then applied to eliminate some groups
• Expressions in group-qualification must have a single value per 

group
– In effect, an attribute in group-qualification that is not an argument of an 

aggregate op also appears in grouping-list
– like “…GROUP BY bid, sid HAVING bid = 3”

• One answer tuple is generated per qualifying group
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First go over the examples in the following slides
Then come back to this slide and study yourself



SELECT S.rating,  MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY  S.rating
HAVING COUNT (*) > 1

sid sname rating age 
22 dustin 7 45.0 
29 brutus 1 33.0 
31 lubber 8 55.5 
32 andy 8 25.5 
58 rusty 10 35.0 
64 horatio 7 35.0 
71 zorba 10 16.0 
74 horatio 9 35.0 
85 art 3 25.5 
95 bob 3 63.5 
96 frodo 3 25.5 

 

 

Answer relation:

Sailors instance:

rating minage 
3 25.5 
7 35.0 
8 25.5 
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Find age of the youngest sailor with age >= 18, for each rating with at 
least 2 such sailors.



Find age of the youngest sailor with age >= 18, for each rating with at 
least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 
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SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)



Find age of the youngest sailor with age >= 18, for each rating with at 
least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 
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rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 2: Apply WHERE clause



Find age of the youngest sailor with age >= 18, for each rating with at 
least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

rating age 
1 33.0 
3 25.5 
3 63.5 
3 25.5 
7 45.0 
7 35.0 
8 55.5 
8 25.5 
9 35.0 
10 35.0 
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rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 3: Apply GROUP BY according to the listed attributes



Find age of the youngest sailor with age >= 18, for each rating with at 
least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

rating age 
1 33.0 
3 25.5 
3 63.5 
3 25.5 
7 45.0 
7 35.0 
8 55.5 
8 25.5 
9 35.0 
10 35.0 
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rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 
1

Step 4: Apply HAVING clause
The group-qualification is applied to eliminate some groups



Find age of the youngest sailor with age >= 18, for each rating with at 
least 2 such sailors.

rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

rating minage 
3 25.5 
7 35.0 
8 25.5 

 

 

rating age 
1 33.0 
3 25.5 
3 63.5 
3 25.5 
7 45.0 
7 35.0 
8 55.5 
8 25.5 
9 35.0 
10 35.0 
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rating age 
7 45.0 
1 33.0 
8 55.5 
8 25.5 
10 35.0 
7 35.0 
10 16.0 
9 35.0 
3 25.5 
3 63.5 
3 25.5 

 

 

SELECT  S.rating,  MIN 
(S.age) AS minage
FROM  Sailors S
WHERE  S.age >= 18
GROUP BY  S.rating
HAVING  COUNT (*) > 1

Step 5: Apply SELECT clause
Apply the aggregate operator
At the end, one tuple per group



Nulls and Views in SQL
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Null Values
• Field values in a tuple are sometimes 
– unknown, e.g., a rating has not been assigned, or 
– inapplicable, e.g., no spouse’s name
– SQL provides a special value null for such situations.
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Standard Boolean 2-valued logic

• True = 1, False = 0
• Suppose X = 5

– (X < 100) AND (X >= 1) is T ∧ T = T
– (X > 100) OR (X >= 1) is F ∨ T = T
– (X > 100) AND (X >= 1) is F ∧ T = F
– NOT(X = 5) is ¬T = F

• Intuitively,
– T = 1, F = 0
– For V1, V2 ∈ {1, 0}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1
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2-valued logic does not work for nulls

• Suppose rating = null, X = 5
• Is rating>8 true or false?
• What about AND, OR and NOT connectives?

– (rating > 8) AND (X = 5)?

• What if we have such a condition in the 
WHERE clause?
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3-Valued Logic For Null

• TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)
– unknown is treated as 0.5

• Now you can apply rules from 2-valued logic!
– For V1, V2 ∈ {1, 0, 0.5}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

• Therefore, 
– NOT UNKNOWN = UNKNOWN
– UNKNOWN OR TRUE = TRUE
– UNKNOWN AND TRUE = UNKNOWN
– UNKNOWN AND FALSE = FALSE
– UNKNOWN OR FALSE = UNKNOWN
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End of Lecture 3


