Duke CS, Fall 2019

CompSci 516
Database Systems

Lecture 3

Data Model
+

More SQL

Instructor: Sudeepa Roy

Announcements

* |f you are enrolled to the class, but

— have not received the email from Piazza, please
email me

— |f you missed Thursday’s lab, please email me

e HW1 will be released this week

* Project ideas will be posted by next week

Duke CS, Fall 2019

Today’s topic

* Physical and Logical Data Independence
 Data Model and XML

* More SQL
— Aggregates (Group-by)!
— Creating/modifying relations/data
— Constraints

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Duke CS, Fall 2019 Dr. Ramakrishnan and Dr. Gehrke. 3

Physical and Logical Data
Independence

Duke CS, Fall 2019

What does a DBMS provide?

Why use a DBMS?

1. Data Independence

— Application programs should not be exposed to the data
representation and storage

— DBMS provides an abstract view of the data

2. Efficient Data Access

— A DBMS utilizes a variety of sophisticated techniques to
store and retrieve data (from disk) efficiently

Why use a DBMS?

3. Data Integrity and Security

— DBMS enforces “integrity constraints” —e.g. check
whether total salary is less than the budget

— DBMS enforces “access controls” — whether salary
information can be accesses by a particular user

4. Data Administration

— Centralized professional data administration by
experienced users can manage data access, organize data
representation to minimize redundancy, and fine tune

the storage

Why use a DBMS?

5. Concurrent Access and Crash Recovery

— DBMS schedules concurrent accesses to the data such
that the users think that the data is being accessed by
only one user at a time

— DBMS protects data from system failures

6. Reduced Application Development Time

— Supports many functions that are common to a number
of applications accessing data

— Provides high-level interface
— Facilitates quick and robust application development

When NOT to use a DBMS?

e DBMS is optimized for certain kind of workloads and
manipulations

* There may be applications with tight real-time constraints or a
few well-defined critical operations

e Abstract view of the data provided by DBMS may not suffice

* To run complex, statistical/ML analytics on large datasets

Duke CS, Fall 2019 9

Levels of Abstractions in a DBMS

External Schema External Schema

External Schema

N/. PhySicaI schema

Logical Schema

1

Physical Schema

a

Disk

Duke CS, Fall 2019

— Storage as files, row vs.
column store, indexes

— will discuss these in
later lectures

10

Levels of Abstractions in a DBMS

External Schema

External Schema

Duke CS, Fall 2019

External Schema

Logical Schema

1

AV

Physical Schema

* Logical/Conceptual schema

— describes the stored data in the
physical schema

 Decided by conceptual schema
design
— e.g. ER Diagram
not covered in this course

— Normalization
will be covered

Students(sid: string, name: string, login:
string, age: integer, gpa: real)

11

Levels of Abstractions in a DBMS

External Schema External Schema

External Schema

N/’ External schema

Logical Schema

1

Y

Physical Schema

A

Disk

Duke CS, Fall 2019

— different “views” of
the database to
different users (later)

* One physical and
logical schema but
there can be multiple
external schemas

12

Data Independence

* Application programs are insulated from
changes in the way the data is structured and
stored

* Averyimportant property of a DBMS

* Logical and Physical

Duke CS, Fall 2019

13

Logical Data Independence

Users can be shielded from changes in the logical
structure of data

e.g. Students:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

Divide into two relations
Students_public(sid: string, name: string, login: string)
Students_private(sid: string, age: integer, gpa: real)

Still a “view” Students can be obtained using the above
new relations

— by “joining” them with sid

A user who queries this view Students will get the same
answer as before

Duke CS, Fall 2019

Physical Data Independence

* The logical/conceptual schema insulates users
from changes in physical storage details

— how the data is stored on disk
— the file structure
— the choice of indexes

* The application remains unaltered

— But the performance may be affected by such
changes

Duke CS, Fall 2019 15

Duke CS, Fall 2019

Data Model and XML
(an overview)

16

Data Model

* Applications need to model some real world units

* Entities:
— Students, Departments, Courses, Faculty, Organization,
Employee, ...
* Relationships:

— Course enrollments by students, Product sales by an
organization

* A data modelis a collection of high-level data
description constructs that hide many low-level
storage details

Duke CS, Fall 2019 17

Data Model

Can Specify:

1. Structure of the data
— like arrays or structs in a programming language
— but at a higher level (conceptual model)

2. Operations on the data
— unlike a programming language, not any operation can be performed
— allow limited sets of queries and modifications
— astrength, not a weakness!

3. Constraints on the data
— what the data can be
— e.g.a movie has exactly one title

Important Data Models
e Structured Data
e Semi-structured Data

e Unstructured Data

What are these?

Duke CS, Fall 2019

19

Important Data Models

e Structured Data
— All elements have a fixed format
— Relational Model (table)

* Semi-structured Data
— Some structure but not fixed
— Hierarchically nested tagged-elements in tree structure
— XML

e Unstructured Data
— No structure
— text, image, audio, video

Duke CS, Fall 2019

20

Semi-structured Data and XML

 XML: Extensible Markup Language

* Will not be covered in detail in class, but many datasets
available to download are in this form

— You will download the DBLP dataset in XML format and
transform into relational form (in HW1!)

e Data does not have a fixed schema

— “Attributes” are part of the data
— The data is “self-describing”
— Tree-structured

Duke CS, Fall 2019 21

XML: Example

Attributes

<article mdate="2011-01-11" key="journals/acta/SaxerX)G'B
<author>Sanjeev Saxena</author>

<title>Parallel Integer Sorting and Simulation Amongst CRCW
Models.</title>

<pages>607-619</pages> ¢ | Elements

<year>1996</year>

<volume>33</volume>

<journal>Acta Inf.</journal>

<number>7</number>

<url>db/journals/acta/acta33.html#Saxena96</url>

<ee>http://dx.doi.org/10.1007/BF03036466</ee>
</article>

Duke CS, Fall 2019

Attribute vs. Elements

* Elements can be repeated and nested
e Attributes are unique and atomic

Duke CS, Fall 2019

23

XML vs. Relational Databases

+ Serves as a model suitable for integration of databases containing similar
data with different schemas

— e.g. try to integrate two student databases: S1(sid, name, gpa) and S2(sid, dept,
year)

— Many “nulls” if done in relational model, very easy in XML
* NULL = A keyword to denote missing or unknown values

+ Flexible — easy to change the schema and data

- Makes query processing more difficult

Which one is easier?

XML (semi-structured) to relational (structured)

or
* relational (structured) to XML (semi-structured)?

Duke CS, Fall 2019 24

XML to Relational Model

* Problem 1: Repeated attributes

<book>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<publisher> McGraw Hill

</book>

What is a good relational schema?

Duke CS, Fall 2019

25

XML to Relational Model

* Problem 1: Repeated attributes
<book>
<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill</publisher>
</book>

What if the paper
has a single author?

Duke CS, Fall 2019 26

XML to Relational Model

* Problem 1: Repeated attributes

<book>
<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems — The Complete Book</title>
<pubisher>Prentice Hall</publisher>

</book>
Does not work

Duke CS, Fall 2019 27

XML to Relational Model

Ramakrishnan
Gehrke
Garcia-Molina
Ullman
Widom

Book BookAuthoredBy
TR T
Database McGraw
Management Hill bl
Systems
b2
b2 Database Prentice
Systems —The Hall b2
Complete b2
Book

Duke CS, Fall 2019

28

XML to Relational Model

attributes

<book> Database McGraw Third
<author>Ramakrishnan</author> Manageme Hill
<author>Gehrke</author> nt Systems
<title>Database Management Systems</title>
<pubisher> McGraw Hill b2 Database Prentice null
<edition>Third</edition> Systems — Hall

</book> The

<book>
<author>Garcia-Molina</author> Complete

Book

<author>Ullman</author>
<author>Widom</author>

<title>Database Systems — The Complete
Book</title>

<pubisher>Prentice Hall</publisher>
</book>

Duke CS, Fall 2019 29

Summary: Data Models

e Relational data model is the most standard for
database managements
— and is the main focus of this course

e Semi-structured model/XML is also used in practice —
you will use them in hw assignments

e Unstructured data (text/photo/video) is unavoidable,
but won’t be covered in this class

Duke CS, Fall 2019 30

Duke CS, Fall 2019

Back to SQL!

31

Expressions and Strings

SELECT S.age, agel=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

* |llustrates use of arithmetic expressions and string pattern matching

* Find triples (of ages of sailors and two fields defined by expressions)
for sailors
— whose names begin and end with B and contain at least three characters

e LIKE is used for string matching. =’ stands for any one character
and "%’ stands for O or more arbitrary characters

— You will need these often

Duke CS, Fall 2019 32

Find sid’s of sailors who’ve reserved a red or a

green boat Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)

Boats(bid, bname, color)

e UNION: Can be used to SELECT S..sid
compute the union of any FROM Gailors S, Boats B, Reserves R

: tib| ts of WHERE S.sid=R.sid AND R.bid=B.bid
tWOI union-compatibie sets o AND (B.color="red” OR B.color="green’)
tuples

— cah themselves be the result of
SQL queries

. SELECT S.sid
hf were p.Iace OR by AND in the FROM Sailors S, Boats B, Reserves R
first version, what do we get? | wHERE S.sid=R.sid AND R.bid=B.bid

* Also available: EXCEPT (What AND B.color="red’

. UNION
do we ge’;lf we replace UNION SELECT S.sid
by EXCEPT?) FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

. -1 . , Sailors (sid, sname, rating, age)
Find sid’s of sailors who've reserved | pcerves(sid, bid, day)

a red and a green boat Boats(bid, bname, color)

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

. - . , Sailors (sid, sname, rating, age)
Find sid’s of sailors who've reserved | pocerves(sid, bid, day)

a red and a green boat Boats(bid, bname, color)

SELECT S.sid

FROM Sailors S, Boats B1, Reserves R1,

INTERSECT: Can be used to Boats B2, Reserves R2 .

compute the intersection of WHERE 8:51d=R1:51d AND Rl..b1d=B1..b1d
: . AND S.sid=R2.sid AND R2.bid=B2.bid

any two union-compatible

AND (B1.color="red” AND B2.color="green’)
sets of tuples.

— Included in the SQL/92 SELECT S.sid
standard, but s-ome systems FROM 6Sailors S, Boats B, Reserves R
don’t support it WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="red’
INTERSECT

SELECT S.sid

FROM 6Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

Nested Queries

Find names of sailors who've reserved boat #103:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

FROM Reserves R
WHERE R.bid=103)

* A very powerful feature of SQL:

— a WHERE/FROM/HAVING clause can itself contain an SQL query

 To find sailors who’ve not reserved #10

3, USe NOTIN.

* To understand semantics of nested queries, think of a

nested loops evaluation

— For each Sailors tuple, check the qualificati

subquery

Duke CS, Fall 2019

ion by computing the

36

Nested Queries with Correlation

Find names of sailors who've reserved boat #103:

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *
FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid

- EXISTS is another set comparison operator, like In

* [llustrates why, in general, subquery must be re-
computed for each Sailors tuple

Duke CS, Fall 2019 37

Nested Queries with Correlation

Find names of sailors who've reserved boat #103
at most once:;

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

* |f uniQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103

— uNlquE checks for duplicate tuples

Duke CS, Fall 2019 38

More on Set-Comparison Operators

We’ve already seen IN, ExisTs and uNIQuE
Can also use NoT IN, NOT EXISTS and NOT UNIQUE.
Also available: op any, op ALL, op N

— whereop : >, <, =, <=, >=

Find sailors whose rating is greater than that of some
sailor called Horatio

— similarly ALL SELECT *
FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio’)

Duke CS, Fall 2019 39

Recall: Aggregate Operators

Check yourself:
What do these queries compute?

SELECT COUNT (*)
FROM Sailors S

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)
\ single column

SELECT S.sname
SELECT AVG (S.age) FROM Sailors S

FROM Sailors S WHERE S.rating= (SELECT MAX(S2.rating)

WHERE S.rating=10

FROM Sailors S2)

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname="Bob’

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

Duke CS, Fall 2016 CompSci 516: Data Intensive Computing Systems

Motivation for Grouping

e So far, we've applied aggregate operators to all
(qualifying) tuples

— Sometimes, we want to apply them to each of several groups
of tuples

* Consider: Find the age of the youngest sailor for each
rating level

— In general, we don’t know how many rating levels exist, and
what the rating values for these levels are!

— Suppose we know that rating values go from 1 to 10; we can
write 10 queries that look like this (need to replace i by num):

‘ SELECT MIN (S.age)
Fori=1,2,..,10: FROM Sailors S
WHERE S.rating =1

Duke CS, Fall 2019 41

First go over the examples in the following slides
Then come back to this slide and study yourself

Queries With GROUP BY and HAVING

SELECT |[DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

* The target-list contains
— (i) attribute names
— (ii) terms with aggregate operations (e.g., MIN (S.age))

- The attribute list (i) must be a subset of grouping-list

— Intuitively, each answer tuple corresponds to a group, and these attributes
must have a single value per group

— Here a group is a set of tuples that have the same value for all attributes in
grouping-list

Duke CS, Fall 2019 42

First go over the examples in the following slides
Then come back to this slide and study yourself

Conceptual Evaluation

The cross-product of relation-list is computed

Tuples that fail qualification are discarded

"Unnecessary’ fields are deleted

The remaining tuples are partitioned into groups by the value of
attributes in grouping-list

The group-qualification is then applied to eliminate some groups

Expressions in group-qualification must have a single value per
group

— In effect, an attribute in group-qualification that is not an argument of an
aggregate op also appears in grouping-list
— like “...GROUP BY bid, sid HAVING bid = 3”

One answer tuple is generated per qualifying group

Duke CS, Fall 2019 43

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

Sailors instance:

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S sid | sname |rating | age

Z;VI?&I}II;? BSYagSe >=18 22 |dustin | 7 [45.0
ratin

HAVING COUNT (9> 1 29 | brutus | 1) 33.0

31 |lubber 8 555

32 |andy 8 [25.5

58 |rusty 10 |135.0

64 | horatio 7 135.0

rating | minage 71 | zorba 10 |16.0

Answer relation: 3 255 74 |horatio 9 1[35.0

7 135.0 85 | art 3 |25.5

8 |25.5 95 |bob 3 |63.5

96 | frodo 3 255

Find age of the youngest sailor with age >= 18, for each rating with at
SELECT S.rating, MIN

least 2 such sailors.

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)

rating | age
7 |45.0
1 [33.0
8 |55.5
8 125.5
10 [35.0
7 135.0
10 [16.0
9 (35.0
3 (255
3 |63.5

25.5

Duke CS, Fall 2019

(S.age) AS minage
FROM Sailors S

WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*) >1

45

Find age of the youngest sailor with age >= 18, for each rating with at

least 2 such sailors.

Step 2: Apply WHERE clause

rating | age
7 |45.0
1 [33.0
8 |55.5
8 125.5
10 [35.0
7 135.0
10 [16.0
9 (35.0
3 (255
3 |63.5
3 (255

Duke CS, Fall 2019

rating | age
7 145.0
1 |33.0
8 [55.5
8 [25.5
10 {35.0
7 135.0
9 135.0
3 1255
3 |63.5
3 1255

SELECT S.rating, MIN
(S.age) AS minage

FROM GSailors S
WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*)>1

46

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

Step 3: Apply GROUP BY according to the listed attributes

rating | age
7 |45.0
1 [33.0
8 |55.5
8 125.5
10 [35.0
7 135.0
10 [16.0
9 (35.0
3 (255
3 |63.5
3 (255

Duke CS, Fall 2019

rating | age
7 145.0
1 |33.0
8 [55.5
8 [25.5
10 {35.0
7 135.0
10 | 16.0
9 135.0
3 1255
3 |63.5
3 1255

rating

age

SELECT S.rating, MIN
(S.age) AS minage

FROM Sailors S

WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*) >1

1

33.0

25.5
63.5
25.5

45.0
35.0

55.5
25.5

O [0 OO0 | J | L W

35.0

[—
-

35.0

47

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

Step 4: Apply HAVING clause

The group-qualification is applied to eliminate some groups

rating | age
7 |45.0
1 [33.0
8 |55.5
8 125.5
10 [35.0
7 135.0
10 [16.0
9 (35.0
3 (255
3 |63.5
3 (255

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >=18
GROUP BY S.rating

Duke CS, Fall 2019

rating | age
7 145.0
1 |33.0
8 [55.5
8 [25.5
10 {35.0
7 135.0
10 | 16.0
9 135.0
3 1255
3 |63.5
3 1255

rating

age

HAVING COUNT (*) >

1

25.5
63.5
25.5

3.0 -

45.0
35.0

55.5
25.5

!

48

Find age of the youngest sailor with age >= 18, for each rating with at

least 2 such sailors. SELECT S.rating, MIN
Step 5: Apply SELECT clause (S.age) AS minage
Apply the aggregate operator FROM Sailors S
At the end, one tuple per group WHERE S.age >=18
: : GROUP BY S.rating
rating | age rating |age rating|age | HAVING COUNT (*) >1
1 [33.0 I [33.0 3 75 5 "
8 |55.5 8 [55.5 3 635
8 [25.5 8 (255 2 |y 5' 5
10 {35.0 » 10 {35.0 - 7 450 ra‘[ing minage
7 135.0 7 135.0 ' 3 (255
7 35.0 :
10 |16.0 10 | 16.0 7 35.0
8 55.5 :
9 135.0 9 135.0 ' 8 25.5
3 (255 3 255 | 8 1250
31635 31635 [T9—350
3 1255 3 (255 350 |

Duke CS, Fall 2019 49

Duke CS, Fall 2019

Nulls and Views in SQL

50

Null Values

* Field values in a tuple are sometimes
— unknown, e.g., a rating has not been assigned, or
— inapplicable, e.g., no spouse’s name
— SQL provides a special value null for such situations.

Duke CS, Fall 2019 51

Standard Boolean 2-valued logic

True=1, False=0

Suppose X =5

~ (X<100)AND (X>=1)isTAT=T
- (X>100)OR(X>=1)isFVT=T

— (X>100) AND (X>=1)is FAT=F
— NOT(X=5)is-T=F

Intuitively,

- T=1,F=0

- For V1, V2 € {1, 0}

- V1AV2=MIN (V1, V2)
- V1vV2=MAX(V1, V2)
- =(V1)=1-V1

Duke CS, Fall 2019

52

2-valued logic does not work for nulls

Suppose rating = null, X =5

Is rating>8 true or false?
What about AnD, OrR and NOT connectives?
— (rating > 8) AND (X =5)?

What if we have such a condition in the
WHERE clause?

Duke CS, Fall 2019

53

End of Lecture 3

3-Valued Logic For Null

- TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)
— unknown is treated as 0.5

 Now you can apply rules from 2-valued logic!
~ ForVi,V2€{1,0,0.5}
~ V1AV2=MIN (V1,V2)
~ V1V V2=MAX(V1, V2)
- =(V1)=1-V1

« Therefore,
— NOT UNKNOWN = UNKNOWN
— UNKNOWN OR TRUE = TRUE
— UNKNOWN AND TRUE = UNKNOWN
— UNKNOWN AND FALSE = FALSE
— UNKNOWN OR FALSE = UNKNOWN

Duke CS, Fall 2019 54

